\qquad Date \qquad
Mathinks

MATHLINKS: GRADE 7 STUDENT PACKET 2 RATIONAL NUMBERS ON THE NUMBER LINE

2.1 Integers and the Number Line

- Graph integers on the number line.
- Graph ordered pairs in the coordinate plane.
- Use arrows to represent direction and distance.
- Solve problems involving integers.
2.2 Opposites and Absolute Value
- Graph integers on the number line.
- Understand and apply the meaning of opposites.
- Understand and apply the meaning of absolute value.
2.3 Rational Numbers and the Number Line 14
- Graph rational numbers on the number line.
- Order rational numbers.
- Graph ordered pairs of rational numbers in the coordinate plane.
- Use arrows to represent direction and distance.
2.4 Skill Builders, Vocabulary, and Review 25

WORD BANK

Word or Phrase	Definition or Description	Example or Picture
absolute value		
distance		
elevation		
equation		
inequality		
rational number		
integer		
opposite of a number		

INTEGERS AND THE NUMBER LINE

Summary

We will extend the positive number line to represent all integers. We will extend the axes of the quarter plane ($1^{\text {st }}$ quadrant) to create a four-quadrant coordinate plane. We will use arrows to represent direction and distance. We will solve problems involving integers and temperature.

Goals

- Graph integers on the number line.
- Graph ordered pairs in the coordinate plane.
- Use arrows to represent direction and distance.
- Solve problems involving integers.

Warmup

Below are some average temperatures in degrees Fahrenheit for the month of July from various locations around the world.

- Label the vertical number line to the right, showing temperatures from 100 degrees below zero $\left(-100^{\circ} \mathrm{F}\right)$ to 100 degrees above zero $\left(100^{\circ} \mathrm{F}\right)$.
- Graph the temperature for each location with a point on the number line. Label the points on the number line to the right.

1. Point C : Cape Town (a region in South Africa) at $0^{\circ} \mathrm{F}$
2. Point M : Munich (a city in Germany) at $60^{\circ} \mathrm{F}$
3. Point F: Fairbanks (a city in Alaska) at $40^{\circ} \mathrm{F}$
4. Point S: The South Pole (a location in Antarctica) at $-70^{\circ} \mathrm{F}$
5. Point D: Death Valley (a region in California) at $100^{\circ} \mathrm{F}$
6. Point E: Ellsworth Land (a region in Antarctica) at $-35^{\circ} \mathrm{F}$

COMPARING TEMPERATURES

- Fold the page on the dotted line to the show the number line from the previous page.
- Compare the temperatures using your number line.
- Complete the verbal sentences. Write a number sentence using $<,=$ or $>$ to match each verbal sentence.

Verbal Sentence		Number Sentence
1.	The temperature in Death Valley is greater than the temperature at the South Pole.	
2.	The temperature in Ellsworth Land is less than the temperature in Cape Town.	
3.	The temperature in Ellsworth Land is temperature at the South Pole.	
4.	The temperature in Munich is the	
temperature at the South Pole.		

Use your number line as needed to complete each number sentence with <, =, or >. Then write a verbal sentence to match each number sentence.

Verbal Sentence		Number Sentence
5.	Thirty is greater than zero	$30 \square 0$
6.		$60 \square-45$
7.		$-60 \square-45$
8.	$35 \square$	

Refer to the number line to the right for problems 1-8.

1. How do you get from -1 to 5 ?
2. How do you get from 5 to -1?
3. How do you get from -1 to -5 ?
4. How do you get from -5 to -1 ?
5. We can show direction and distance on a number line with an arrow. The length of the arrow will refer to the distance from its head to its tail.
a. The first arrow starts at -2 and ends at 2. Its length is \qquad .
b. The second arrow starts at 2 and ends at -2 . Its length is \qquad .

c. Now look at the direction of the arrows. Why do you think we say that the first arrow represents 4 , while the second one represents -4 ?
6. Draw an arrow that starts at -2 and represents the number 5 .

The arrow ends at which number? \qquad
How do you know this arrow represents a positive number?
11. Draw an arrow that starts at 0 and represents the number -5 .

The arrow ends at which number? \qquad
How do you know this arrow represents a negative number?

DIRECTION AND DISTANCE ON THE NUMBER LINE (Continued)

12. The first arrow to the right represents 4.

Draw a different arrow near this number line that also represents 4.
13. The second arrow to the right represents -4 . Draw a different arrow near this number line that also represents -4 .
14. How do you get from 5 to 0 ?
15. How do you get from -5 to -1 ?
16. How do you get from 5 to -5 ?
17. How do you get from -3 to 3 ?

18. Which of the movements in problems 14-17 required moving the greatest distance?

Is this a change in the positive or negative direction?

Use the number lines to the right to draw arrows. Be sure to scale each number line appropriately.
19. Draw an arrow that starts at 9 and represents the number 6.
Where does the arrow end? \qquad
20. Draw an arrow that starts at -11 and represents the number -7 .

Where does the arrow end? \qquad
21. Draw an arrow that starts at -31 and represents the number 5 .

Where does the arrow end? \qquad

19.	20.	21.
\uparrow	\uparrow	\uparrow
'	T	-
-	T	-
-	T	-
-		
-	-	
-	T	十
-	-	-
T	-	十
	-	
-		-
-	-	-
-	-	-
Ғ	F	F

TEMPERATURE PROBLEMS

Draw arrows on the number lines below to represent each situation. Then answer each question.

1. At 7:00 AM, the temperature in Los Angeles was $55^{\circ} \mathrm{F}$. At noon, the temperature was $85^{\circ} \mathrm{F}$. What was the temperature change from 7:00 AM to noon?
2. At 3:00 AM, the temperature on the Bering Strait Coast in Alaska was $-10^{\circ} \mathrm{F}$. At 3:00 PM, the temperature was $5^{\circ} \mathrm{F}$. What was the temperature change from 3:00 AM to 3:00 PM?
3. At Hermosa Beach, the high temperature during the day was $80^{\circ} \mathrm{F}$. The low temperature at night was $55^{\circ} \mathrm{F}$. What is the difference between these temperatures?
4. The temperature in a refrigerator is $40^{\circ} \mathrm{F}$. The temperature in a freezer is $-5^{\circ} \mathrm{F}$. What is the difference between these temperatures?
1.2 .

H111111111111+111

TEMPERATURE PROBLEMS (Continued)

Draw arrows on the number lines below to represent each situation. Then answer each question.
5. In Anchorage, Alaska, the temperature rose $15^{\circ} \mathrm{F}$ during the day. The high temperature was $-10^{\circ} \mathrm{F}$ on this day. What was the low temperature?
6. In Siberia, Russia, the temperature one day rose 30 degrees from the day's low temperature. On this day it rose to $10^{\circ} \mathrm{F}$. What was the low temperature that day?
7. A freezer is kept at a temperature of $-15^{\circ} \mathrm{F}$. The electricity went out one morning, and that evening the temperature inside the freezer had climbed to $45^{\circ} \mathrm{F}$. How much did the temperature change?
8. At the top of a mountain, the morning temperature is $-5^{\circ} \mathrm{F}$. In the afternoon, it is $20^{\circ} \mathrm{F}$ higher. What is the afternoon temperature?
5.

GRAPHING IN FOUR QUADRANTS

When the x-axis and y-axis are extended to include negative values, they divide the coordinate plane into four regions, called quadrants. The quadrants are numbered in a clockwise order using Roman Numerals. Each quadrant is scaled the same.

1. Label the x - and y-axes.
2. Graph the origin at the point $(0,0)$ and label it O.
3. Scale the axes.
4. Graph the ordered pairs and label them with the given letters.
A $(4,4)$
$B(-4,-4)$
$C(1,5)$
$D(-1,-5)$
$E(5,1)$
$F(5,-1)$
$G(3,0)$
$H(-3,0)$
$K(8,6)$
$L(-8,6)$
$M(6,8) \quad N(6,-8)$

5. Name the location of each ordered pair above by the quadrant it is in or the axis it is on.

Point	Location	Point	Location
A		H	
B		I	
C		J	
D		M	
E		N	
F			
G			

BATTLING SHIPS

The Setup:

Each player uses two coordinate grids. Label all axes from -5 to 5 . One grid should be labeled "Self" and the other "Opponent." (One game setup is provided below.)

Each player then decides where to place three rectangular ships: a Battleship (5 units $x 1$ unit), a Cruiser (3 units $\times 1$ unit), and a Destroyer (2 units $\times 1$ unit). All ships must be placed in straight lines either horizontally or vertically. It is legal (but not required) for two or more ships to be adjacent to each other, but they cannot overlap. Label the ships B, C, and D.

The Game:

Players take turns calling out one coordinate at a time. If a player calls a coordinate where an edge or corner of a ship is located, the opponent says "hit" and the player gets another turn. If no ship is located at the coordinate, the opponent says "miss," and players change roles.

Players should take care to record their hits and misses on their "Opponent" grid so that they do not call a coordinate more than once. Players should also mark the "Self" grid with shots taken by their opponent.

A ship is sunk when all of its coordinates have been hit. When this happens, the player whose ship was sunk says, "You sank my (B, C, or D) ship."

The winner is the first player to sink all of the opponent's ships. Make sure to exchange grids afterwards to check that both players marked coordinates correctly.

OPPOSITES AND ABSOLUTE VALUE

Summary

We will learn to interpret and evaluate the opposite and absolute value of a number.

Goals

- Graph integers on a number line.
- Understand and apply the meaning of opposites.
- Understand and apply the meaning of absolute value.

Warmup
Elevation relative to sea level is measured vertically from sea level. It can be measured in miles, kilometers, feet, etc. We use positive measurements for locations above sea level, and negative measurements for locations below sea level.

1. Suppose we are measuring elevation relative to sea level in meters. What does an elevation of 0 meters represent?

Label the number lines to the right in appropriate increments of meters for each problem. Illustrate each situation with an arrow and answer each question.
2. A flying fish starts 15 meters below the surface and jumps to a height of 5 meters out of the water. What is its total change in elevation relative to sea level?
3. A diver is 5 meters above the surface of the ocean on a boat. She dives in and swims to 30 meters below the surface. What is her total change in elevation relative to sea level?
4. A shark is at -20 meters relative to sea level. It swims down to -80 meters relative to sea level. What is its total change in elevation relative to sea level?

4.

OPPOSITES

Write a number that you might use to represent each situation. Then represent the opposite of the given situation using words and appropriate numbers. Be ready to explain your answers.

Situation	Opposite of the Situation		
Words	Number	Words	Number
1. Fall 12 feet	-12	Rise 12 feet	
2. Find $\$ 5$			
3. Gain 4 yards (in football)			
4. Three steps backward			

For problems 5 and 6, draw arrows to illustrate each situation on the number lines below. Then explain the end result in words.
5. A football player gains 10 yards and then loses 10 yards.

0
6. You take 8 steps backward and then 8 steps forward.

For problems 7 and 8 , describe the end result of each situation in words.
7. A bird falls 20 feet and then rises 20 feet.
8. You find $\$ 40$ and then lose $\$ 40$.
9. Use the number line below to illustrate the opposite of an opposite. Locate 6. The opposite of 6 is \qquad , and in turn, the opposite of this number is \qquad .
Therefore, the opposite of the opposite of 6 is \qquad . We write $-(-6)=$ \qquad

ABSOLUTE VALUE

- The absolute value of a number is its distance from zero on the number line.
- The absolute value of a number n is denoted $|n|$.
- The number 20 has distance 20 from 0 , and the number -20 also has distance 20 from 0, so both have absolute value equal to 20 .

$$
|20|=20 \text { and }|-20|=20
$$

- Distance and absolute value are always greater than or equal to zero.

Label the vertical number line to the right to show locations from 100 meters below sea level $(-100 \mathrm{~m})$ to 100 meters above sea level (100 m). Then graph and label the following points on the number line to the right.

1. Point P : A pigeon at 10 m above sea level
2. Point D : A dolphin at 20 m below sea level
3. Point W : A whale at 60 m below sea level
4. Point C: A crow at 55 m above sea level
5. Point S: A swimmer at sea level
6. Point G: A gull at 20 m above sea level

Complete the table.

	What	Location relative to sea level	Distance from zero (sea level)	Absolute value equation for the distance from sea level
7.	pigeon	+10 m	10 m	$\|+10\|=$
8.	dolphin		20 m	$\|-20\|=$
9.		-60 m		
10.			55 m	
11.		+20 m		$\|0\|=$
12.	swimmer			
13.	sea level			

ABSOLUTE VALUE (Continued)

Fold the page on the dotted line to show the number line from the previous page.
14. Draw an arrow from sea level to the location of the crow.
a. How do you know from the arrow that the crow is above sea level?
b. How do you know from the arrow that its distance from sea level is 55 meters?
c. What is $|55|$?
15. Draw an arrow from sea level to the location of the dolphin

a. How do you know from the arrow that the dolphin is below sea level?
b. How do you know from the arrow that its distance from sea level is 20 meters?
c. What is $|-20|$?
16. What is the distance between the crow and the dolphin? How do you know?
17. What is the distance between the dolphin and the whale? How do you know?

PRACTICE

1. On the number line below, graph each number and its opposite: $5,-3,9,-10,0$

Write the opposite of each expression in simplified form.

Example: 10-4 opposite: $-(10-4)=-6$	2. 12 opposite:	3. $\|0\|$ opposite:
4. $19-7$ opposite:	5. $6-4$ opposite:	6. $\quad-\|6-4\|$ opposite:

7. What is the opposite of the opposite of -6 ? \qquad
8. What is the opposite of the opposite of $|-6|$? \qquad
9. On the number line above, how do you get from a positive number to its opposite?
10. On the number line above, how do you get from a negative number to its opposite?

Simplify the absolute value expressions.

11. $-\|-16\|$	12. $\|12\|$	13. $\|0\|$	
14.	$\|19-6\|$	15.	$\|-4\|$

Write >, <, or = in the blanks to make each statement true.

| 17. \| -8| _ 8 | 18. $\|-8\| \ldots$ | 19. -\| -8|_-8 |
| :---: | :---: | :---: |

20. Marge thinks that the opposite of a number and the absolute value of a number are the same thing. Is Marge correct? Use examples or counterexamples to support your answer.

RATIONAL NUMBERS AND THE NUMBER LINE

Summary

We will locate and order rational numbers on the number line. We will graph ordered pairs in the coordinate plane.

Goals

- Graph rational numbers on the number line.
- Order rational numbers.
- Graph ordered pairs of rational numbers in the coordinate plane.
- Use arrows to represent direction and distance.

Warmup
Use the symbols $<,=$, or $>$ to make each number sentence true. Explain your reasoning.

1. $\frac{3}{4}-\frac{3}{7}$
2. 0.40 \qquad 0.04
3. $-(-5)$ \qquad 5
4. $\frac{6}{7}-\frac{9}{10}$
5. $|-30| \quad-30$

FRACTIONS AND THEIR OPPOSITES

The opposite of a fraction is its additive inverse and is located the same distance from zero as the fraction, but in the opposite direction. For example, $\frac{3}{8}$ is a fraction, and $-\frac{3}{8}$ is its opposite.

1. Label the hatch marks on the number line below with the appropriate numbers.

2. Graph and label each number on the number line below.

$\frac{2}{10}$	$\frac{2}{5}$	$-\frac{6}{10}$	$-\frac{1}{5}$	$-\frac{4}{5}$

3. Estimate the location of $\frac{1}{3}, \frac{2}{3}$, and their opposites on the number line below.

On the number lines at the right, draw appropriate hatch marks to help you estimate the location of the given numbers.
4. $\quad \frac{4}{8} \quad \frac{1}{8} \quad \frac{7}{8} \quad-\frac{3}{8} \quad \frac{2}{8} \quad \frac{0}{8} \quad-\frac{6}{8} \quad-\frac{8}{8}$
5. $\frac{3}{6} \quad \frac{1}{6} \quad-\frac{2}{6} \quad-\frac{5}{6} \quad \frac{6}{6} \quad-\frac{0}{6}$

MIXED NUMBERS AND THEIR OPPOSITES

The opposite of a mixed number is its additive inverse and is located the same distance from zero as the mixed number, but in the opposite direction. For example, $1 \frac{3}{4}$ is a mixed number, and $-1 \frac{3}{4}$ is its opposite.

Fill in the blanks.

	Mixed Number	Opposite of the Mixed Number
Example	$1 \frac{1}{2}$	$-1 \frac{1}{2}$
1. Read as	"one and one-half"	
2. The sum of	$1 \text { and } \frac{1}{2}$	-1 and
3. Number line representation		
4. As a fraction (or its opposite)	$1 \frac{1}{2}=\frac{3}{2}$	$-1 \frac{1}{2}=-\left(\square \frac{\square}{\square}\right)=-\frac{\square}{\square}$

Fill in the blanks.

Number	The sum of	Mixed number and its opposite	
5.	$2 \frac{1}{2}$	and	
6.	$-2 \frac{1}{2}$	and	
7.	$-1 \frac{3}{4}$	and	

8. Graph $2 \frac{1}{4}$ and $-2 \frac{1}{4}$ on the number line below.

DECIMALS AND THEIR OPPOSITES

The opposite of a decimal is its additive inverse and is located the same distance from zero as the decimal, but in the opposite direction. For example, 0.25 is a decimal, and -0.25 is its opposite.

For problems 1 and 2 , graph and label each number on the number lines below.
1
$0.5 \quad-0.5$
0.8
$-0.2 \quad 0.25$
-0.3
-0.65
2.

3. Find the value of $A, B,-A$ and $-B$. Locate $-A$ and $-B$ on the number line below.
$A=$
$B=$ \qquad
$-A=$ \qquad

$$
-B=
$$

\qquad

4. Find the value of $C, D,-C$ and $-D$. Locate $-C$ and $-D$ on the number line below.

5. Graham says that $-X$ could represent a positive number on a number line. Give an example that supports Graham's statement.

A rational number is a number that can be expressed in the form $\frac{a}{b}$ or $-\frac{a}{b}$ for some fraction $\frac{a}{b}$. Rational numbers are numbers that can be expressed as a quotient of integers where the denominator cannot be zero.

$$
\text { Examples: } 1 \frac{1}{2}=\frac{3}{2} \quad-6=-\frac{6}{1} \quad 0.75=\frac{3}{4}
$$

1. Here is a list of rational numbers:
$\frac{3}{8}$
$1.5-\frac{3}{8} \quad-1 \frac{3}{4} \quad-\frac{11}{8}$

- From the list, the greatest number is \qquad . The least number is \qquad .
- Make hatch marks for some relevant integer values on the number line below.
- Break unit segments into relevant fractional parts.
- Graph each number as a point on the number line.

2. Here is a list of rational numbers.

$$
\begin{array}{lllllll}
\frac{5}{8} & -1.6 & \frac{5}{3} & -2 \frac{1}{10} & -1 \frac{4}{5} & -\frac{1}{4} & -0.75
\end{array}-\frac{2}{3}
$$

a. Estimate the location of each number on the number line below.
b. Which rational numbers did you locate on your number line first?
c. Explain how you located -1.6 and $-1 \frac{4}{5}$.

ORDER IT!

You will need:

- 2 or more players
- 32 or more Rational Number Cards

The object of this game is to get five numbers in a row, in order, from least value to greatest value. Once a card is placed on the table face up, it may not be moved to another location. However, a new card may be placed on top of it.

- Shuffle all the cards and place the cards face down in a pile.
- To begin, put 5 cards face-up, in the order they are drawn.
- The first player draws a card from the pile and places it on top of one of the existing faceup cards. If all of the cards are now in order from least to greatest, then the player wins. If not, then play passes to the next player.
- The next player draws a card from the pile and places it on top of one of the existing face-up cards. If all the cards are now in order from least to greatest, then the player wins. If not, then play continues until eventually one player wins by getting all five cards in order from least to greatest.

In order to win, the player must convince his or her opponent with a reasonable argument that the cards are in order.

1. Play two rounds of Order It! Record one of the ordered card sequences here.
2. Explain how you know that the numbers are in order.

DIRECTION AND DISTANCE ON THE NUMBER LINE: RATIONAL NUMBERS

Use the number line below for problems 1-8.

1. How do you get from 0.2 to 0.5 ?
2. How do you get from 0.7 to -0.2 ?
3. How do you get from -0.3 to 0.4 ?
4. How do you get from -0.4 to -0.3 ?
5. What is the distance from 0.2 to 0.5 ?
6. What is the distance from 0.7 to -0.2 ?
7. What is the distance from -0.3 to 0.4 ?
8. What is the distance from -0.4 to -0.3 ?

Use the number line below for problems 9-16.

9. How do you get from $\frac{1}{4}$ to $\frac{1}{2}$?
11. How do you get from $2 \frac{1}{4}$ to $\frac{3}{4}$?
13. How do you get from $\frac{3}{4}$ to $-1 \frac{1}{2}$?
15. How do you get from $-2 \frac{1}{2}$ to $1 \frac{1}{4}$?
10. What is the distance from $\frac{1}{4}$ to $\frac{1}{2}$?
12. What is the distance from $2 \frac{1}{4}$ to $\frac{3}{4}$?
14. What is the distance from $\frac{3}{4}$ to $-1 \frac{1}{2}$?
16. What is the distance from $-2 \frac{1}{2}$ to $1 \frac{1}{4}$?

Rational Numbers on the Number Line

DIRECTION AND DISTANCE ON THE NUMBER LINE: RATIONAL NUMBERS (Continued)

The arrow from 1 to $-\frac{1}{2}$ on the number line to the right represents $-1 \frac{1}{2}$.

17. Draw two arrows that represent $-1 \frac{1}{2}$, but with the given starting points. Then name the ending points.

b. Starts at $-\frac{1}{2}$ and ends at \qquad .

18. Draw two arrows that represent $-\frac{5}{8}$, but with the given ending points. Then name the starting points.
a. Starts at \qquad and ends at 0.
b. Starts at \qquad and ends at $-\frac{1}{2}$.

19. Draw two arrows that represent 0.6 , but with the given starting points. Then name the ending points.
a. Starts at 0.2 and ends at \qquad .
b. Starts at -0.8 and ends at \qquad .

20. Draw two arrows that represent -0.4 , but with the given ending points. Then name the starting points.
a. Starts at \qquad and ends at 0.2 .
b. Starts at \qquad and ends at -0.2 .

RATIONAL NUMBER COORDINATES

The x-axis and the y-axis can be extended to include all rational numbers. Let each small square on the grid represent a one-by-one unit square.

1. Label and scale the axes.
2. Graph the origin at the point $(0,0)$ and label it O.
3. Graph the ordered pairs and label them with the given letters.
A $(0,4)$ $B\left(-4 \frac{1}{2},-4 \frac{1}{2}\right)$
$C(1.5,5.5)$
$D(-1.5,-5.5)$
$E\left(5 \frac{1}{4}, 1 \frac{3}{4}\right) \quad F\left(5 \frac{1}{4},-1 \frac{3}{4}\right)$
$G(3.2,0.8)$
$H(-3.2,0.8)$
I (0.8, 3.2)
$J(0.8,-3.2)$
$K\left(7 \frac{1}{3}, 6 \frac{2}{3}\right)$
$L\left(-7 \frac{1}{3}, 6 \frac{2}{3}\right)$

$M\left(6 \frac{2}{3}, 7 \frac{1}{3}\right) \quad N\left(6 \frac{2}{3},-7 \frac{1}{3}\right)$
4. Name the location of each ordered pair by the quadrant it is in or the axis it is on.

Point	Location	Point	Location
A		H	
B		I	
C		J	
D		M	
E		N	
F			
G			

PRACTICE

1. Ocean water freezes at about $-2^{\circ} \mathrm{C}$. Fresh water freezes at $0^{\circ} \mathrm{C}$. Antifreeze, a liquid used in the radiators of cars, freezes at about $-60^{\circ} \mathrm{C}$. Imagine that the outside temperature has dropped to the freezing point for ocean water. How many degrees more must the temperature drop for the antifreeze to turn solid?
2. Why are the numbers $\frac{0}{6}$ and $-\frac{0}{6}$ equivalent?

Complete the table.

Rational Number	Round to the nearest lesser integer	Round to the nearest greater integer	Graph the rational number (First locate and label a few relevant integers on the number line.)
3.$\frac{13}{3}$			
4.	$-2 \frac{1}{3}$		
5.	-1.7		

6. Which number in problems 3-5 above was most difficult to locate on a number line? \qquad Explain.
7. Fill in the blanks with these three numbers: $-\frac{1}{5}, \frac{2}{5},-\frac{4}{5}$ \qquad $>$ \qquad $>$ \qquad
8. Simplify:
a. $\left|\frac{2}{5}\right|$
b. $\left\lvert\,-\frac{1}{5}\right.$
c. $-\left\lvert\, \frac{4}{5}\right.$
9. What is the opposite of $\frac{2}{7}$? \qquad What is the opposite of the opposite of $\frac{2}{7}$? \qquad
10. Locate $-A$, and $-B$ on the number line below. Then fill in the blanks below.

\qquad
$A=$
$B=$ \qquad
$-A=$ \qquad
$-B=$ \qquad

PRACTICE (Continued)

11. Graph and label an estimated location for each of the following points on the number line below.

a. If $V=0.2$ and $W=\frac{5}{8}$, name any three numbers that could lie between V and W on the number line.
b. If $M=\frac{9}{10}$, name the two integers that $-M$ is between on the number line.
12. Draw two arrows that represent 0.4 , but with the given starting points. Then name the ending points.
a. Starts at 0.4 and ends at \qquad b. Starts at -0.9 and ends at \qquad

13. Name the quadrant in which each ordered pair is located.
$(-4,5)$ \qquad $(3.4,-2)$ \qquad $\left(-3 \frac{1}{6},-10\right)$ \qquad
14. Miguel says that $(0,6)$ and $(-6,0)$ represent opposites on an axis in the coordinate plane. Explain what his error might be and offer a possible correction.

SKILL BUILDERS, VOCABULARY, AND REVIEW

SKILL BUILDER 1

Compute.

1. $4.5+9$	2.	$25-8.9$
3. $103.7-4.67$	4.	$\frac{8}{9}-\frac{2}{9}$
$3 \frac{1}{4}+1 \frac{2}{4}$	6.	$2 \frac{1}{8}-\frac{5}{8}$
5.		

7. Josie, Connor, and Olivia had a total of $\$ 20.00$ to spend at the mall. Josie had $\$ 5.67$ and Connor had $\$ 9.12$. How much money did Olivia have?
8. Circle all of the expressions that are equivalent to 143.

252-109
$5,005 \div 36$
$118+25$
$26 \cdot 4$

SKILL BUILDER 2

Compute.

1. $\frac{1}{2}+\frac{3}{4}$
2. $\frac{3}{5}-\frac{1}{10}$
3. $1 \frac{5}{6}+2 \frac{1}{4}$
4. $2 \frac{5}{8}-1 \frac{3}{10}$
5. $3 \frac{1}{12}-1 \frac{5}{8}$
6. At Joe's Pizza, Camille, Frank, and Julie ate an entire pizza together. Camille ate $\frac{2}{5}$ of the pizza and Frank ate $\frac{1}{4}$ of the pizza. Who ate the greatest amount of pizza, Camille, Frank, or Julie? Explain.
7. Write three fractions that are equivalent to $\frac{4}{6}$.

SKILL BUILDER 3

Compute.

7. Jill is planning her birthday party. She wants to take 8 of her friends to an amusement park. A ticket to get into the park costs $\$ 40.88$. If Jill has $\$ 245$ to spend on her friends, does she have enough money to invite them all to the birthday party? Explain.

Write a decimal representation for each number.

8.	$\frac{3}{4}$	9.	$\frac{1}{8}$	10.

SKILL BUILDER 4

1. Maya jogs 8 yards every 5 seconds.
a. Complete the table.

yards	8			40			1	2
seconds		10	15		0	1		

b. Complete each sentence.

Maya's rate of jogging is ___ yards for one second.
Maya's unit rate in yards per second is \qquad .

At this rate, Maya will jog \qquad in one minute.
c. Label the double number line diagram below, which represents this relationship.
yards

2. To make orange dye, Enrique uses red dye and yellow dye in a ratio of $3: 2$. He began a tape diagram to find how many quarts of red and yellow dye he will need to make 30 quarts of dye. Finish the tape diagram and solve Enrique's problem.

Compute.

$3.546 \bullet 8$	4.	$4,536 \div 36$

SKILL BUILDER 5

Draw an arrow on each number line to help you complete the table．Scale appropriately．

	Morning Temperature	Change	Afternoon Temperature
1.	$-30^{\circ} \mathrm{F}$	rises $45^{\circ} \mathrm{F}$	
2.	$-20^{\circ} \mathrm{F}$	falls $20^{\circ} \mathrm{F}$	
3.	$-20^{\circ} \mathrm{F}$	rises $20^{\circ} \mathrm{F}$	
4.	$20^{\circ} \mathrm{F}$		$45^{\circ} \mathrm{F}$
5.	$0^{\circ} \mathrm{F}$		$-15^{\circ} \mathrm{F}$
6.		falls $40^{\circ} \mathrm{F}$	$-30^{\circ} \mathrm{F}$
7.	rises $10^{\circ} \mathrm{F}$	$5^{\circ} \mathrm{F}$	
8.		falls $30^{\circ} \mathrm{F}$	$0^{\circ} \mathrm{F}$

3.

5.
6.
7.

8.

SKILL BUILDER 6

1. Estimate the location of each number on the number line below.
$2 \frac{2}{3}$
$\frac{8}{5}$
0.45
2.25
$\frac{4}{3}$
0.8
2. Explain how you located $\frac{8}{5}$ on the number line above.

Use the symbols $<,=$, or $>$ to compare.

3.	$\frac{1}{9} _0 . \overline{1}$		$\frac{5}{6}-\frac{5}{9}$		5.

9. Mark the axes with an appropriate scale. Then locate all ordered pairs by marking a dot and labeling the letter on the coordinate plane.
A $(0,1)$
$B(1,0.4)$
$C(0.2,0.6)$
$D(0.5,0.9) \quad E(0.3,1.1) \quad F(1.3,0.8)$

SKILL BUILDER 7

1. On the number line below, graph the following numbers and their opposites.

Write the opposite of each expression in simplified form.

8. 8	9.	$\|5\|$	10.	$-\|6\|$
11.	$13-6$	12.	$15-9$	13.

14. What is the opposite of the opposite of -8 ? \qquad
15. What is the opposite of the opposite of $|-8|$? \qquad

Write $>,<$, or $=$ in the blanks to make each statement true.

| 16. $\|-12\| \ldots$ | | |
| :--- | :--- | :--- | :--- | :--- |
| 12 | 17. $\|-12\| \ldots __-12$ | 18. $\quad-\|-15\| \ldots$ |

19. Grace says that the absolute value of 5 is negative five. Is Grace correct? Use examples or diagrams to support your answer

SKILL BUILDER 8

For problems 1-3, graph and label each number on the number line.

4. Locate $-M$ and $-N$ on the number line below. Express each of the following as a fraction.

5. Locate $-A$ and $-B$ on the number line below. Express each of the following as a decimal.

SKILL BUILDER 9

Each small square on the grid is a unit square.

1. Label the axes.
2. Graph the origin at the point $(0,0)$ and label it 0 .
3. Graph the ordered pairs and label them with the given letters.
$A(4,4)$
$B(-5,-4)$
$C(-8,5)$
D (7, -2)
$E(5,1)$
$F(5,-1)$
$G(0,-5.5)$
$H(-3.2,0.8)$
$I\left(3 \frac{1}{2}, 1 \frac{3}{4}\right)$

II
4. Name the location of each ordered pair by the quadrant or axis it is on.

Point	Location	Point	Location
A		F	
B		G	
C		H	
D		J	
E			

FOCUS ON VOCABULARY

Across

4 As an example: $-40+60=20$
5 The point whose coordinates are $(0,0)$

7 Whole numbers and their opposites

8 Any one of the four regions in the coordinate plane is called a \qquad .
$9 \quad \frac{5}{3}$ is an ___ fraction
$12 \quad 5 \frac{3}{4}$ is a \qquad number

13 A \qquad number can be written as quotient of integers

Down

$1-5.34$ is the \qquad of 5.34
$2 \quad \frac{3}{5}$ is a \qquad fraction

3 The absolute value of a number is its
\qquad from zero on the number line.

4 Location above or below sea level
$6-55<-50$ is an example of an \qquad

10 The coordinate \qquad has two perpendicular lines.

11 A point in the coordinate plane is represented by an ordered \qquad .
(For word hints, see the word bank and other vocabulary used in this packet.)

SELECTED RESPONSE

Show your work on a separate sheet of paper and choose the best answer(s).

1. Choose all the statements whose end result is a movement 5 steps forward from the starting point. The four statements are independent of each other.

A. Move 5 steps backward and then 5 steps forward.
 C. Move 20 steps backward and then 15 steps forward.

B. Move 20 steps forward and then 15 steps backward.
2. In the morning, the temperature was $-10^{\circ} \mathrm{F}$ risen $25^{\circ} \mathrm{F}$. What was the temperature then?
A. $35^{\circ} \mathrm{F}$
B. $15^{\circ} \mathrm{F}$
C. $-35^{\circ} \mathrm{F}$
D. $-15^{\circ} \mathrm{F}$
3. Choose all of the following expressions that have a value of 7 .
A. $\quad-7$
B. $16-9$
C. $9-16$
D. $|-7|$
4. Choose all the true statements below.
A. $\quad-9=\mid-9$
B. $9=\mid-9$
C. $|-10|<9$
D. $|-10|>9$
5. What is the value of K ?

A. $-\frac{1}{5}$
B. $\frac{1}{5}$
C. $-\frac{2}{5}$
D. $\frac{2}{5}$
6. Which of the following accurately describe the location of point E ? Choose all that apply.
A. $(-6,2)$
B. $(-1.5,0.5)$
C. $\left(-1 \frac{1}{2}, \frac{1}{2}\right)$
D. $\left(-\frac{3}{2}, \frac{1}{2}\right)$

KNOWLEDGE CHECK

Show your work on a separate sheet of paper and write your answers on this page.

2.1 Integers and the Number Line

1. The morning temperature at the University of Minnesota was $-2^{\circ} \mathrm{F}$. In the afternoon, it was 11 degrees higher. What was the afternoon temperature?
2. Write a number sentence comparing the morning and afternoon temperatures in problem 1 using the greater than symbol.

2.2 Opposites and Absolute Value

3. Graph the following integers and their opposites on the number line below.
$\begin{array}{lllll}-3 & 5 & -9 & 8 & 0\end{array}$

Write >, =, or < in the blanks to make each statement true.

4.	5.	6.
$\|-7\| \ldots 7$	$\|-7\| \ldots \quad-7$	$-\|-7\| \ldots-7$

2.3 Rational Numbers and the Number Line

Use the number line below for problems 7-10.

7. How do you get from $-\frac{1}{4}$ to $2 \frac{3}{4} ?$	8. What is the distance from $-\frac{1}{4}$ to $2 \frac{3}{4} ?$
$9 . \quad$ How do you get from 1.25 to $-3.75 ?$	10. What is the distance from 1.25 to $-3.75 ?$

HOME-SCHOOL CONNECTION

Here are some problems to review with your young mathematician.

1. In Harbin (China), the low temperature for the day was $-12^{\circ} \mathrm{F}$ and the high temperature was $9^{\circ} \mathrm{F}$. Find the difference between these temperatures.
2. Write a number sentence that explains the arrow on the vertical number line to the right.
3. Locate $-C$ and $-D$ on the number line below. Write each number as a decimal or its opposite.
$C=$ \qquad
$D=$ \qquad
$-C=$ \qquad $-D=$ \qquad

For problem 2.

4. Find the length of segment $\overline{C D}$.
\qquad

COMMON CORE STATE STANDARDS - MATHEMATICS

STANDARDS FOR MATHEMATICAL CONTENT

6.NS.5*	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive nd negative numbers to represent quantities in realworld contexts, explaining the meaning of 0 in each situation
6.NS.6a*	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates: Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
6.NS.6b*	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates: Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
6.NS.6c*	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates: Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
6.NS.7*	Understand ordering and absolute value of rational numbers.

*Review of content essential for success in $7^{\text {th }}$ grade.

STANDARDS FOR MATHEMATICAL PRACTICE	
MP2	Reason abstractly and quantitatively.
MP3	Construct viable arguments and critique the reasoning of others.
MP5	Use appropriate tools strategically.
MP6	Attend to precision.

