ENGAGING STUDENT WITH BIG IDEAS NCTM - 2023

Presented by:

Cynthia Raff

cynthia@mathandteaching.org

Scan for a copy of lesson plans and the slide deck.

GOALS

- Explore the

$$
\begin{aligned}
& \text { power of big } \\
& \text { ideas }
\end{aligned}
$$

- Do some math as examples
- Look for connections

Mathinks

DISCUSS

-What do you think are some big ideas for your grade level?

THE KEYCHAIN FUNDRAISER

The Lincoln Middle School fundraising committee wants to sell keychains to raise money for the big dance. Keychains are packaged and sold in small quantities.
(1a) Copy the pricing information for the Hi -Tops keychains.

HI-TOPS

2 for $\$ 3.00$
(1b) Complete a table that relates the number of keychains (quantity) and cost.
(1c) Write an input-output rule that relates quantity and cost.
(1d) Complete a double number line.

FROM NUMBER LINES TO GRAPHS

Math Links

ANOTHER OPTION

HI-TOPS
 2 for $\$ 3.00$

(2a-2e)
For the Donuts keychains:

- Copy the pricing information.
- Complete a table, equation, double number line, and graph (round as needed).

COMPARING REPRESENTATIONS

THE KEYCHAIN FUNDRAISER

Follow your teacher's directions for (1) and (2).
(1a) - (1e) and (2a) - (2e) Copy pricing information, and complete the various representations.

(1c) Rule: \qquad
(2a)

DONUTS	
Table \# of keychains (x) (quantity) Cost in $\$(y)$ 3 4 6 8 9 12 1 1.33 2 2.66 or 2.67	

(2c) Rule \qquad

COMPARING REPRESENTATIONS

Double Number Lines Rounding may vary by one cent.

(1e) Graph

trend lines may be drawn to stress the linear relationships
(2e) Graph

3. Record the meanings of unit rate and unit price in My Word Bank.

Center For
Mathematics
Mathematics
And Teaching

AN EXTENSION

A COMMITTEE DECISION

(Using the MathLinks Rubric) See Activity Rourines in he Teacher Portal for instructions. [SMP4, 5, 7] Help the Lincoln Middle School fundraising committee decide which keychains to sell for the undraiser. The six different keychains analyzed on the previous pages are listed below. In addition, a small survey was taken, the results of which are in the table below.

1. Complete the table. Percent rounded to the nearest whole percen
2. Complete the table. Percent rounded to the nearest whole percent.

Keychain	Price	Unit price price per keychain)	Students polled who preferred this keychain: Humber	Percent
Donuts	2 for $\$ 3$	$\$ 1.50$	18	30%
Googlies	5 for $\$ 4$	$\$ 1.33$	$\$ 1.20$	10
Emojis	6 for $\$ 5$	$\$ 0.83$	20	17%
Locks	3 for $\$ 6$	$\$ 2.00$	6	33%
Cubes	2 for $\$ 5$	$\$ 2.50$	1	10%
			Total:	60

Consider unit prices from the table.

2. What is the range of prices?	3. What is the median price?	4. What is the mean price?
$\$ 2.50-\$ 0.83=\$ 1.67$	$\$ 1.42$	$\$ 1.56$

Write one statistical question based on each. Answers will vary. Examples:

5. Unit prices	6. Students polled
What is the typical unit price of a keychain?	What keychains do students like best?

7. Recommend one or more keychains to the committee based on data from the table. Answers will vary Some posibilities

- Recommend emoji's because they are the cheapest
- Recommend googlies because they are the most popular and $2^{\text {nd }}$ cheapest

BIG IDEAS EXAMPLE 1 - GRADE 6

Mathinks

BIG IDEAS EXAMPLE 2 - GRADE 6

Extend the number system
to include negatives.

Explore relationships between inputs and outputs.

Investigate concepts and solve problems involving length, area, and volume.

Use statistical measures and
 displays to describe center and spread.

Gain computational fluency with positive rational numbers.

What were some Big Ideas and connections that you saw in that
Keychain Problem?

Rewrite and evaluate expressions and solve equations.

Explore and apply ratio and rate reasoning and representations.

STANDARDS FOR MATHEMATICAL PRACTICE

Make sense of problems and persevere in solving them.

- Understand a problem and look for entry points
$\bar{\Sigma}$ - Consider simpler or analogous problems
- Monitor progress and alter solution course as needed
- Make connections between multiple representations
- Check answers with a different method

Reason abstractly and quantitatively.

N - Use numbers and quantities flexibly in computations
$\sum_{\infty}^{\mathbf{N}}$ - Attend to the meaning of quantities

- Decontextualize a problem using symbols, manipulate them, and then interpret based on the context

Construct viable arguments and critique the reasoning of others.

- Use assumptions, definitions, established results, examples, and counter examples to analyze an argument and discuss its merits or flaws
- Make and test conjectures based on evidence
- Analyze situations by breaking them into cases
- Understand and analyze the approaches of others

Model with mathematics.

- Attach meaningful mathematics to everyday problems and questions of interest
- Make reasonable assumptions and approximations to simplify a situation
- Identify quantities, use mathematical tools (such as multiple representations, formulas, equations) to analyze relationships
- Interpret results and draw conclusions in the context of the situation

STANDARDS FOR MATHEMATICAL PRACTICE

FELIX THE SHEEP

Felix the Sheep has been getting into things lately, so Farmer Frank tied him up at the corner of the barn with a rope.

What is the area of the grass where Felix can graze?
What do we know?
What do you wonder?
What tools might be helpful to solve this problem?

SOME DETAILS

> The base of the barn is a rectangle.
$>$ The rectangle is 40 ft by 20 ft .
$>$ The rope is 30 ft long.

(1) Summarize the facts and the main question in the problem.
(2) Try to solve the problem. Include a labeled diagram and show all calculations clearly.

BIG IDEAS - GRADE 7

Sample to understand

Find the likelihood of events with probability.
populations with statistics.

Apply proportional reasoning to ratios, rates, percent, and scale.
Solve problems involving measurements of geometric figures.

Operate with rational numbers.

Use algebra as a problem-solving tool.

Big Ideas - Connections - Grade 7

These ideas build on past work and prepare students for the future. Some of these include:

Prior Work

What's Ahead

- Measure with a ruler and protractor (Gr 2, 4)
- Find areas by decomposing figures into non-overlapping shapes or counting squares (Gr 2, 3)
- Identify and use properties of polygons (Gr 2-5)
- Model more complex problems using geometric formulas (Gr 8+)
- Study geometry as a system of definitions, postulates, and theorems (Gr 9+)
- Study and use analytic geometry (Gr 9+)
- Develop formulas and find areas of triangles and special quadrilaterals (Gr 6)

DISCUSS

What were some Big Ideas, Prior Work, and SMP connections that you saw in the Felix The Sheep problem?

Math Links

In Conclusion

GOALS :

- Do some math

```
The Keychain Fundraiser
Felix the Sheep
```

- Big Ideas?

```
Studied a more simplistic version
```

- Make Connections

```
Connected Big Ideas to problems
Viewed connections to past and prior
grade levels
Found where Standards for Mathematical
Practice were applied
```


THANK YOU FOR ATTENDING!

- Use the QR code to get a more complete handout and slide deck.
- Stop by booth 636 and continue the conversation.

Cynthia Raff
cynthia@mathandteaching.org

All activities from
MathLinks: Core $2^{\text {nd }}$ edition
www.mathandteaching.org

