

Presented by:
Shelley Kriegler
(with Cynthia Raff and Mark Goldstein)
CMC-South, 2023

TODAY'S PLAN

- Concept: "Proportion" Equations
- Practice: "Proportion" Equations
- Review: Statistics Vocabulary
- Simulation: A Fishy Problem

7TH GRADE BIG IDEAS AND CONNECTIONS

Sample to understand populations with statistics.

Find the likelihood of events with probability. (7.SP.C)
(7.SP.AB)

Solve problems involving measurements of geometric figures. (7.G.B)

Develop spatial reasoning in two- and three-dimensions.

CONCEPT: EQUATIONS $\left(\frac{a}{b}-\frac{c}{d}\right)$

DOUBLE NUMBER LINES

A paint mixture is 4 parts red and 5 parts white. Make a double number line for this relationship.

How does this connect to equivalent ratios?

CONNECT CONCEPT TO PROBLEM

\square
\square
\square
\square
\square

A paint mixture is 4 parts red and 5 parts white. How much white paint is needed to create this mixture with 18 quarts of red?

18

22.5 quarts

CONNECT CONCEPT TO EQUATION

D:

\square
\square
\square
\square
\square
\square

A paint mixture is 4 parts red and 5 parts white. How much white paint is needed to create this mixture with 18 quarts of red?

x quarts

EQUATIONS(cont.)

$$
\frac{4}{18}=\frac{5}{x}
$$

$$
\frac{4}{5}=\frac{18}{x}
$$

Math inks

PRACTICE: EQUATIONS ($\frac{a}{b}=\frac{c}{d}$)

FOUR IN A ROW

Object of the Game

 Get 4 spaces across, down, or diagonally."Y"?

- Attain skill for problem solving
- Practice in a game format

FOUR IN A ROW: MATERIALS

- Game board
- 2 sets of colored counters

- 2 other objects like:

FOUR IN A ROW: LET'S PLAY

ADDITION

Players: 2
Materials: Board game, 2 sets of colored counters (for the game board), 2 objects (e.g. cubes paperclips, cut up paper) that will cover numbers in Box A and Box B

Object of the Game: Players alternate choosing addends from Box A and Box B to create sums. They cover sums on the game board. The winner is the first player to get four in a row.

Box A: Addend			Box B: Addend			
2	3	5	6	8		
6	9	12	4	6	30	

Game Board: Sums						
20	11	39	16	28	19	
26	7	17	22	33	25	
18	11	12	17	32	12	
36	23	23		13	35	
14	9	29	10	42	13	
15	6	16	20	20	10	

FOUR IN A ROW: LET'S PLAY

Shelley's turn

Players: 2
Materials: Board game, 2 sets of colored counters (for the game board), 2 objects (e.g. cubes, paperclips, cut up paper) that will cover numbers in Box A and Box B

Object of the Game: Players alternate choosing addends from Box A and Box B to create sums. They cover sums on the game board. The winner is the first player to get four in a row.

Box A: Addend			Box B: Addend			
2	3	5	6	8	4 12 20 6 9 14	

Game Board: Sums						
20	11	39	16	28	19	
26	7	17	22	33	25	
18	11	12	17	32	12	
36	23	23		13	35	
14	9	29		42	13	
15	6	16	20	20	10	

FOUR IN A ROW: LET'S PLAY

ADDITION

Players: 2
Materials: Board game, 2 sets of colored counters (for the game board), 2 objects (e.g. cubes, paperclips, cut up paper) that will cover numbers in Box A and Box B

Object of the Game: Players alternate choosing addends from Box A and Box B to create sums. They cover sums on the game board. The winner is the first player to get four in a row.

Box A: Addend			Box B: Addend			
2	3	5	4	6	8	
6	9	12	14	20	30	

Game Board: Sums						
20	11	39	16	28	19	
26	7	17	22	33	25	
18	11	12		32	12	
36	23	23		13	35	
14	9	29		42	13	
15	6	16	20	20	10	

FOUR IN A ROW: LET'S PLAY

Shelley's turn

Game Board: Sums						
20	11	39	16	28	19	
26	7	17	22	33	25	
18	11	12		32	12	
36	23	23		13	35	
14	9			42	13	
15	6	16	20	20	10	

Players: 2
Materials: Board game, 2 sets of colored counters (for the game board), 2 objects (e.g. cubes, paperclips, cut up paper) that will cover numbers in Box A and Box B

Object of the Game: Players alternate choosing addends from Box A and Box B to create sums. They cover sums on the game board. The winner is the first player to get four in a row

Box A: Addend			Box B: Addend			
2	3	5	4	6	8	
6	9	12	14	20	30	

FOUR IN A ROW: CHEAT SHEET

		80x ${ }^{\text {8 }}$					
	$\substack{\text { Sove } \\ \text { forx }}$	$\frac{x}{40}$	$\frac{24}{x}$	$\frac{x}{200}$	$\frac{300}{x}$	$\frac{x}{100}$	$\frac{120}{x}$
	$\frac{2}{4}$					50	
	$\frac{3}{2}$	60	16	300	200	150	
	$\frac{2}{5}$	16	60	80	750	40	360
¢	5	8	120	40	1500	20	
	$\frac{6}{8}$	30	32	150	400	75	
	$\frac{6}{10}$	24	40	120	500	60	

YOUR TURN

FOUR IN A ROW: PROPORTIONS

Players: 2+
Objective: Be the first player to claim 4 spaces in a row, column, or diagonal to win the game.
Materials: Board game, 2 sets of colored counters (for the game board), 2 objects (e.g. cubes, paperclips, cut up Materials: Board game, 2 sets of colored counters

Rules: Two players alternate solving for x by choosing constant from Box A, an expression from Box B, and
setting them equal to one another. (Example: $\frac{4}{2}-\frac{x}{40}$.) Players check the solution and, if successful, place their colored counter on a space with the appropriate solution.

BOX A: CONSTANT		
$\frac{2}{4}$	$\frac{3}{2}$	$\frac{2}{5}$
$\frac{1}{5}$	$\frac{6}{8}$	$\frac{6}{10}$

BOX B: EXPRESSION		
$\frac{x}{40}$	$\frac{24}{x}$	$\frac{x}{200}$
$\frac{300}{x}$	$\frac{x}{100}$	$\frac{120}{x}$

GAME BOARD: PROPORTIONS (SOLVE FOR x)					
16	300	8	120	60	600
20	30	100	80	200	20
400	40	300	1500	150	16
50	240	60	24	40	750
120	80	500	200	75	32
600	150	48	40	160	60

REVIEW: VOCABULARY

A VOCABULARY MATCHING ACTIVITY

Work with a partner and two sets of cards.
One partner has the Δ set, the other has the \bigcirc set.

First match your own I-II-III-IV word cards to your A-B-C-D description cards.

Discuss both sets of cards with your partner. Be sure you agree the matches are correct.

Record the matching card numbers, words, and card letters for each set in the table.

YOUR TURN

Individually, match words with descriptions and record results.

Card set \triangle			Card set O		
Card number	word	Card letter	Card number	word	Card letter
I			I		
II			II		
III			III		
IV			IV		

LET'S COMPARE

Here are the word cards for "II"

What is the SAME about them?

Choose another pair of number-matched cards.
Discuss and record their similarities and differences.

SIMULATION: A FISHY PROBLEM

ESTIMATING FISH POPULATIONS

Your group will answer the question, "How many fish are in Lake Calculus?" using a "mark-recapture" simulation method.

a lake

a net

fish in the lake (unmarked)

marked fish

SET UP THE EXPERIMENT

THE VARIABLES

(1) Identify and define the variables.
$\boldsymbol{P}_{\text {marked }}=$ number of marked fish in the Population
$\boldsymbol{P}_{\text {total }}=$ total fish in the Population
$S_{\text {marked }}=$ number of marked fish in given Sample
$\boldsymbol{S}_{\text {total }}=$ total fish in a given Sample
(2) Write in your known value.

Which variable's value do we want to solve for? Why?

PERFORM THE EXPERIMENT

Here is how to perform the simulation.

- Shake the lake and grab a scoop of fish.

Which variables are represented in this sample?

For this
example:
$S_{\text {total }}=14$
$\boldsymbol{S}_{\text {marked }}=2$

- Fill in the chart for YOUR Sample 1.
- Return the fish to the lake and repeat this process for Samples 2-6.
(3) Perform the simulation. Fill in the table as you go.

ANALYZE THE DATA (for the given example)

$S_{\text {marked }}$	2
$S_{\text {total }}$	14
$P_{\text {marked }}$	10

Which variable is not in the table? Why not?

What is the...
ratio of the samples?
$S_{\text {marked }}: S_{\text {total }} \rightarrow 2: 14$
value of this ratio? $\frac{2}{14}$
ratio of the populations?
$P_{\text {marked }}: P_{\text {total }} \rightarrow 10: x$
value of this ratio? $\frac{10}{x}$

If we assume a proportional relationship between the random sample and the actual lake population, what equation that can be used to estimate $P_{\text {total }}$?

$$
\frac{2}{14}=\frac{10}{x}
$$

DRAW CONCLUSIONS

How did you compute your estimate?

How close were you?

What assumptions might scientists make when estimating fish using a mark-recapture technique?

Explain in what ways our process followed this modeling cycle.

TO WRAP UP

7TH GRADE BIG IDEAS AND CONNECTIONS

Sample to understand populations with statistics.

Find the likelihood of events with probability. (7.SP.C)
(7.SP.AB)

Solve problems involving measurements of geometric figures. (7.G.B)

Develop spatial reasoning in two- and three-dimensions.

REQUEST MATERIALS

- Slide Deck Presentation
- Four in a Row (3 games)
- Match and Compare Sort (4 activities)
- Estimating Fish Populations (complete lesson plan)

THANK YOU!

Shelley Kriegler Mark Goldstein Cynthia Raff

Center for Mathematics and Teaching www.mathandteaching.org

