Probability Student Resources

# STUDENT RESOURCES

| Word or Phrase           | Definition                                                                                                                                                                                                        |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| dependent events         | Two events are <u>dependent</u> if the occurrence (or nonoccurrence) of one event affects the likelihood of the other. See <u>independent events</u>                                                              |  |  |  |
| event                    | An <u>event</u> is a subset of the sample space. See sample space.                                                                                                                                                |  |  |  |
|                          | In the probability experiment of rolling a number cube, "rolling an even number" is an event, because getting a 2, 4, or 6 is a subset (part) of the sample space of {1, 2, 3, 4, 5, 6}.                          |  |  |  |
| experimental probability | In a repeated probability experiment, the <u>experimental probability</u> of an event is the number of times the event occurs divided by the number of trials. This is also called <u>empirical probability</u> . |  |  |  |
|                          | If, in 25 rolls of a number cube, we obtain an even number 11 times, we say that the experimental probability of rolling an even number is $\frac{11}{25} = 0.44 = 44\%.$                                         |  |  |  |
| fair game                | A game of chance is a fair game if all players have equal probabilities of winning.                                                                                                                               |  |  |  |
|                          | A two-person game of chance is a fair game if each player has probability $\frac{1}{2}$ of winning, that is, if each player has the same probability of winning as of losing.                                     |  |  |  |
| independent<br>events    | Two events are <u>independent</u> if the occurrence (or nonoccurrence) of one event does not affect the likelihood of the other. See <u>dependent</u> .                                                           |  |  |  |
|                          | In the probability experiment of rolling a number cube and flipping a coin, the event of rolling a 1 is independent of the event of getting heads on the coin flip.                                               |  |  |  |
|                          | The probability of rolling the 1 is $\frac{1}{6}$ , no matter what the outcome of the coin flip is.                                                                                                               |  |  |  |
|                          | In other words, the cube roll does not depend at all on the coin flip.                                                                                                                                            |  |  |  |
| outcome                  | An <u>outcome</u> is a result of a probability experiment.                                                                                                                                                        |  |  |  |
|                          | If we roll a number cube, there are six possible outcomes: 1, 2, 3, 4, 5, 6.                                                                                                                                      |  |  |  |
| percent                  | A <u>percent</u> is a number expressed in terms of the unit $1\% = \frac{1}{100}$ .                                                                                                                               |  |  |  |
|                          | Fifteen percent = $15\% = \frac{15}{100} = 0.15$ .                                                                                                                                                                |  |  |  |
|                          | $\frac{5}{6} = 0.8\overline{3} = 83.\overline{3}\%$                                                                                                                                                               |  |  |  |

MathLinks: Grade 7 (2<sup>nd</sup> ed.) ©CMAT

Probability Student Resources

| Word or Phrase          | Definition                                                                                                                                                                                                                                                                               |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| probability             | The <u>probability</u> of an event is a measure of the likelihood of that event occurring. The probability $P(E)$ of the event $E$ occurring satisfies $0 \le P(E) \le 1$ . If the event, $E$ , is certain to occur, then $P(E) = 1$ . If the event $E$ is impossible, then $P(E) = 0$ . |
|                         | When flipping a fair coin, the probability that it will land on heads is $\frac{1}{2} = 0.5 = 50\%$ .                                                                                                                                                                                    |
| probability experiment  | A probability experiment is an experiment in which the results are subject to chance.                                                                                                                                                                                                    |
| Схреннен                | Rolling a number cube can be considered a probability experiment.                                                                                                                                                                                                                        |
| repeating decimal       | A <u>repeating decimal</u> is a decimal that ends in repetitions of the same block of digits.                                                                                                                                                                                            |
|                         | The repeating decimal 52.19343434 ends in repetitions of the block "34." An abbreviated notation for the decimal is 52.1934, where the bar over 34 indicates that the block is repeated.                                                                                                 |
|                         | The terminating decimal 4.62 is regarded as a repeating decimal. Its value is 4.620000                                                                                                                                                                                                   |
| sample space            | The <u>sample space</u> for a probability experiment is the set of all possible outcomes of the experiment.                                                                                                                                                                              |
|                         | In the probability experiment of rolling a number cube, the sample space can be represented as the set {1, 2, 3, 4, 5, 6}.                                                                                                                                                               |
| simulation              | Simulation is the imitation of one process by means of another process.                                                                                                                                                                                                                  |
|                         | We may simulate rolling a number cube by drawing a card blind from a group of six identical cards labeled one through six.  We may simulate the weather by means of computer models.                                                                                                     |
| terminating<br>decimal  | A <u>terminating decimal</u> is a decimal whose digits are 0 from some point on. Terminating decimals are regarded as repeating decimals, though the final 0's in the expression for a terminating decimal are usually omitted. See <u>repeating decimal</u> .                           |
|                         | $4.62 = 4.62000000$ is a terminating decimal with value $4 + \frac{6}{10} + \frac{2}{100}$ .                                                                                                                                                                                             |
| theoretical probability | The theoretical probability of an event is a measure of the likelihood of the event occurring.                                                                                                                                                                                           |
|                         | In the probability experiment of rolling a (fair) number cube, there are six equally                                                                                                                                                                                                     |
|                         | likely outcomes, each with probability $\frac{1}{6}$ . Since the event of rolling an even                                                                                                                                                                                                |
|                         | number corresponds to 3 of the outcomes, the theoretical probability of rolling an even number is 3 out of 6, or $3 \cdot \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$ .                                                                                                                     |
| trial                   | Each performance or repetition of a probability experiment is called a trial.                                                                                                                                                                                                            |
|                         | Flipping a coin 25 times can be viewed as 25 trials of the probability experiment of flipping a coin once.                                                                                                                                                                               |

MathLinks: Grade 7 (2<sup>nd</sup> ed.) ©CMAT Unit 1: Student Packet

### **Phrases That Describe Probabilities**

In their assessment reports on climate change, climate scientists attach the following probabilities to common expressions of likelihood:

Virtually certain: > 99% probability

Extremely likely: > 95% probability

Very likely: > 90% probability

Likely: > 66% probability

More likely than not: > 50% probability

About as likely as not: 33 to 66% probability

Unlikely: < 33% probability

Very unlikely: < 10% probability

Extremely unlikely: < 5% probability

Exceptionally unlikely: < 1% probability

## **Estimating Probabilities from an Experiment With Equally Likely Outcomes**

To estimate the probability of an event *E*, repeat the experiment a number of times and observe how many times the event occurs. The estimate for the probability of the event *E* occurring is then given by the fraction:

estimate = 
$$\frac{\text{number of times an event } E \text{ occurs}}{\text{number of trials}}$$
 =  $\frac{\text{numerator}}{\text{denominator}}$ 

In a probability experiment of rolling a number cube with six equally likely outcomes, each has probability  $\frac{1}{6}$ .

The event of rolling an odd number corresponds to three outcomes: 1, 3, or 5. Below is data from an experiment where a cube is rolled 10 times.

| Trial # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---------|---|---|---|---|---|---|---|---|---|----|
| Outcome | 4 | 5 | 6 | 3 | 5 | 2 | 1 | 6 | 4 | 2  |

In this experiment, an odd number occurred 4 times.

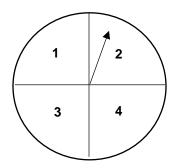
estimate(odd) = 
$$\frac{4}{10} = \frac{2}{5} = 40\%$$

Since the estimate is based on an experiment, different experiments may lead to different estimates.

#### **Finding Theoretical Probabilities**

In a probability experiment of rolling a number cube with six equally likely outcomes, each has probability  $\frac{1}{6}$ .

The event of rolling an odd number corresponds to three outcomes: 1, 3, or 5. Thus the theoretical probability of rolling an odd number is given by the fraction:

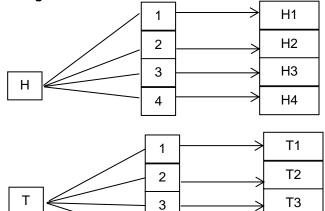

$$P(E) = \frac{\text{number of outcomes in an event } E}{\text{total number of outcomes}} = \frac{3}{6} = \frac{1}{2} = 50\%$$

# **Sample Space Displays**

T4

Suppose our experiment is to flip a coin and then spin the spinner.






Below are three ways to show all the outcomes (or the sample space) of the experiment.

## 1. Outcome grid:

|              |           | Spinner |    |    |    |  |
|--------------|-----------|---------|----|----|----|--|
|              |           | 1       | 2  | 3  | 4  |  |
| Coin<br>Flip | Heads (H) | H1      | H2 | НЗ | H4 |  |
|              | Tails (T) | T1      | T2 | Т3 | T4 |  |

# 2. Tree diagram:



## 3. List

| H1 | H2 | Н3 | H4 |
|----|----|----|----|
| T1 | T2 | Т3 | T4 |