Period	

Date _____

UNIT 3 STUDENT PACKET

THE ALGEBRA OF EXPONENTS AND ROOTS

		Monitor Your Progress	Page
	My Word Bank		0
3.0	Opening Problem: Folding Paper		1
3.1	 Exponent Facts and Rules Work with expressions involving positive, negative, and zero exponents. Understand and apply the product, power, and quotient rules for exponents. 	3 2 1 0 3 2 1 0	2
3.2	 Large and Small Quantities Write very large and very small quantities in different ways (i.e., scientific notation). Solve problems with very large and very small quantities expressed in different ways. 	3 2 1 0 3 2 1 0	10
3.3	 Exponents and Roots Work with squares, square roots, cubes, and cube roots of rational numbers. Solve equations involving variables squared and cubed. 	3 2 1 0	18
	Review		23
	Student Resources		30

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See **Student Resources** for mathematical vocabulary.

possible. Occ Otadent Resources for mathematic	tiodi vocabalary.
conjecture	cube of a number
cube root	exponent notation
radical expression	scientific notation

OPENING PROBLEM: FOLDING PAPER

[SMP 1, 3, 4, 5, 7]

Follow your teacher's directions for (1) - (3).

(1) $-$ (2)	01 (1) – (3).	
1		
2		
3		
4		
5		
6		
7		

(3) As the number of folds increases by 1, the number of sections created _____.

From the third column, we see that the number of sections can be written as...

From the first row, it seems reasonable that 2^{-} = -.

4. Continue the patterns below.

3 ⁴ = • • = =	10 ⁴ = • =
33	10 ³
3 ²	10 ²
31	10 ¹
30	10 ⁰

5. Record the meanings of <u>exponent notation</u> and <u>conjecture</u> in **My Word Bank**.

6. Make a conjecture about zero as an exponent for $x \neq 0$: $x^0 =$ _____. Check this conjecture in the **Student Resources** and correct it if necessary.

EXPONENT FACTS AND RULES

We will work with expressions involving positive, negative, and zero exponents; and use patterns to make conjectures for rules that apply to expressions involving integer exponents.

[8.EE.1; SMP2, 3, 7, 8]

GETTING STARTED

Fill in the missing cells below. All bases and exponents are natural numbers.

	Base	Exponent	Exponent form	Factors (as a multiplication expression)	Value (simplified form)
1.	3	6			
2.			6 ³		
3.				10 • 10 • 10 • 10 • 10 • 10	
4.					625
5.			17760	No factors	

Think about the properties of squares and cubes. Fill in the missing cells below. All side and edge lengths are in linear units, areas are in square units, and volumes are in cubic units.

	Squares			
	Side length	Area		Edge le
6.	5		10.	7
7.		100	11.	
8.	n		12.	р
9.		m ²	13.	
7. 8.	n	2	11. 12.	

	Cubes LJ		
	Edge length	Volume	
10.	7		
11.		64	
12.	р		
13.		k^3	

14. x^3 may be read "x to the third power" or "x cubed." Write a numerical equation that relates to problem 10 using this notation.

INVESTIGATING TWO EXPONENT PATTERNS

Follow your teacher's directions for (1) - (12).

	Expression	Factors (as a multiplication expression)	Exponent form
(1)			
(2)			
(3)			
(4)			
(5)			
(6)			
(7)			
(8)			
(9)			
(10)			
(11)			
(12)			

Use the appropriate exponent rule if possible to rewrite each expression form.

	Expression	A base to an exponent (like a^b , if possible)		plicable ru (circle one)	ıle
13.	7 ² •7 ³		product	power	neither
14.	$(9^3)^2$		product	power	neither
15.	$3^6 \bullet 6^3$		product	power	neither
16.	$(x^5)^8$		product	power	neither
17.	$x^5 \bullet x^8$		product	power	neither

PRACTICE 1

- 1. The product rule for exponents is ______
- 2. Circle all equations that correctly depict the product rule.

$$2^5 \cdot 2^7 = 2^{35}$$

$$4^5 \cdot 6^5 = 10^5$$

$$9 \cdot 9^8 = 9^9$$

$$y^2 \bullet y^8 = y^{10}$$

$$w^5 \bullet w = w^6$$

$$m^3 \bullet n^3 = mn^3$$

Apply the product rule.

3.	3 ⁶ • 3 ⁶	4.	6 ² • 6 ¹²
5.	$v^5 \bullet v^{10}$	6.	$k^4 \bullet k$

- 7. Create a numerical expression such that after the product rule is applied, it is equal to 81.
- 8. The power rule for exponents is ______
- 9. Circle all equations that correctly depict the power rule.

$$(2^5)^7 = 2^{35}$$

$$(4^5)^5 = 4^{10}$$

$$9^2 \bullet 9^7 = 9^9$$

$$(y^2)^8 = y^{16}$$

$$(w^5)^6 = w^{30}$$

$$(m^3)^3=m^6$$

Apply the power rule.

10. $(3^6)^4$	11. $(9^2)^2$
12. $(v^5)^{10}$	13. $(k^3)^5$

- 14. Create a numerical expression such that after the power rule is applied, it is equal to 64.
- 15. Josue looked at problem 11 and said, "Even if I mixed up these two exponent rules, I could still get it right." Explain what Josue meant.

A THIRD PATTERN: THE QUOTIENT RULE FOR EXPONENTS

Complete the table for powers of 10. Following patterns down each column may be helpful. Some side-by-side entries for columns III and IV will be exactly the same (like for problem 3).

	l ciae by ciae c	Titles for columns in and	VIII DO GRACII	y the came (into	Ter presient e):
	I	II	III	IV	V
	Expression	Expanded Form	Power of 10 (fractions okay)	Power of 10 (no fractions)	Value (fractions okay)
1.	$\frac{10^3}{10^0}$			10³	
2.	$\frac{10^3}{10^1}$	10 • 10 • 10 10			
3.	$\frac{10^3}{10^2}$		10 ¹	101	
4.		10 • 10 • 10 10 • 10 • 10			
5.	10 ³	_	1		
	10 ⁴		10 ¹		
6.	$\frac{10^3}{10^5}$				

- 7. The expressions in column I are quotients with the same bases. The expressions in column IV are in exponent form. What fact about the exponents in column I determines when the exponents in column IV will be...
 - a. Positive?
 - b. Negative?
 - c. Zero?
- 8. Do any of the expressions above with negative exponents result in a negative value?
- 9. Look at columns IV and V. How is 10⁻² related to 10²?
- 10. Look at columns I and IV: $\frac{10^3}{10^5} = 10^{-1}$, so $\frac{10^3}{10^5} = 10^{-1}$

A THIRD PATTERN: THE QUOTIENT RULE FOR EXPONENTS Continued

Complete the table just like the previous page, but for powers of 3.

	I	II	III	IV	V
	Expression	Expanded Form	Power of 3 (fractions okay)	Power of 3 (no fractions)	Value (fractions okay)
11.	$\frac{3^{1}}{3^{0}}$				
12.			3 ⁰		
13.	$\frac{3^1}{3^2}$				$\frac{1}{3}$
14.	$\frac{3^{1}}{3^{3}}$				
15.		3 3•3•3•3			
16.					

- 17. Look at columns IV and V. How is 3⁻¹ related to 3¹?
- 18. Look at columns I and IV: $\frac{3^1}{3^5} = 3^{-}$, so $\frac{3^1}{3^5} = 3^{-}$
- 19. Patti thinks that a base number to a negative power must result in a negative value. Is Patti correct? Explain.
- 20. Make four conjectures below. If $x \ne 0$, then:

mand tour conjectance	5010 W 1 1 7 7 0 1 1 1 0 1 1 1		
x ⁰ =	x ⁻¹ =	x ^{-a} =	$\frac{x^a}{x^b} =$

Check your conjectures in the **Student Resources**, and correct them if necessary.

PRACTICE 2

1. Rewrite each algebraic expression to illustrate a fact about exponents. Then create a numerical example. (00 and division by zero are not defined.)

Words	Symbols	Numerical Example
The value of a number to the zero power	x ⁰ =	
The meaning of -1 as an exponent	x ⁻¹ =	
The meaning of a negative exponent	x ^{-a} =	
The product rule for exponents	$x^a \cdot x^b =$	
The power rule	$(x^a)^b =$	
The quotient rule	$\frac{x^a}{x^b}$ =	

2. Why do none of the rules above apply to the expressions $5^2 \cdot 3^6$ and $\frac{7^2}{3^2}$?

Apply exponent rules to these expressions. Results with positive exponents in them are okay.

the state of the s	Aprese, etter i tee and man peenar	o experience in them are enay.
3. 8 ⁻²	4. 8 ⁻⁶	5. 8 ⁻² • 8 ⁻⁶
6. 9 • 9 ⁷	7. 9 • 9 ⁻⁷	8. 9 ⁻¹ • 9 ⁷
9. $(6^3)^2$	10. (6 ⁻³) ²	11. (6 ⁻³) ⁻²
12. $\frac{12^6}{12^6}$	13. $\frac{12^6}{12^4}$	14. $\frac{12^4}{12^6}$
15. $\frac{5^7}{5^0}$	16. $\frac{5^{\circ}}{5^{7}}$	17. $\frac{5^{-3}}{5^{-2}}$

PRACTICE 3

1. Write four different expressions equivalent to 28 that include exponents. Computing 28 is

2. Using the quotient rule, write $\frac{5^4}{5^8}$ as 5 to a single power. _____

Now write this expression with a positive exponent. _

Simplify by using positive	ve exponents.		
3. $\frac{(5^2)^2}{5^3}$	4. $\frac{5^3 \cdot 5^2}{(5^3)^2}$	$5.$ $\frac{5^3 \cdot 5^2}{5^4 \cdot 5^2}$	6. $\frac{(5^2)^2}{5^6}$
7. 2 ⁻³ • 2 ⁵	8. 2 ³ • 2 ⁻⁵	9. $\frac{2^2 \cdot 2^{-3}}{2^3}$	10. $\frac{2^{-3} \cdot 2^{-3}}{2^{-2}}$
11. 3 ⁴ • 1/3 ⁴	12. $3^{-4} \bullet \frac{1}{3^4}$	13. $3^4 \bullet \frac{1}{3^{-4}}$	14. $\frac{2 \cdot 3^{20}}{6 \cdot 3^{17}}$

PRACTICE 4: EXTEND YOUR THINKING

Apply exponent rules and write as a simple fraction or decimal

<u>, ippiy</u>	exponent rules a	and write as a	simple fraction	i di decimal.
1.	$\frac{\left(\left(\frac{1}{2}\right)^2\right)^3}{\left(\left(\frac{1}{2}\right)^2\right)^3}$	\rightarrow	\rightarrow	
2.	$\left(\frac{1}{2}\right)^2 \bullet \left(\frac{1}{2}\right)^3$	\rightarrow	\rightarrow	
3.	$\left(\left(\frac{2}{3}\right)^2\right)^3$	→	→	
4.	$\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^3$	\rightarrow	\rightarrow	
5.	$((0.2)^2)^3$	\rightarrow	→	
6.	$(0.2)^2 \bullet (0.2)^3$	\rightarrow	→	

7. If $\left(\frac{1}{4}\right)^3 = \left(\frac{1}{2}\right)^n$, what is the value of n?

Compute.

Compute.		
8. (-2) ² 9. (-2) ³	10. (-2) ⁴	11. (-2) ⁵
12. (-2) ⁻² 13. (-2) ⁻³	14. (-2) ⁻⁴	15. (-2) ⁻⁵

16. Karin thinks that a negative number to a negative power must be negative. Is Karin correct? Explain.

LARGE AND SMALL QUANTITIES

We will write very large and very small quantities in different ways, including scientific notation. We will solve problems involving large and small quantities.

[8.EE.3, 8.EE.4; SMP1, 3, 4, 5, 6, 8]

GETTING STARTED

1. Fill in the place value chart below and locate the decimal point.

Hundredths

Pund locate the decimal point.

Write each number:

- 2. One trillion, twenty billion, three hundred million, four thousand, five hundred
- 3. Seventy-eight thousandths
- 4. Six ten-thousandths

Round each number below as directed.

	Number	Nearest hundreds	Nearest tenths	One significant digit	Two significant digits
Exam	ple: 74,259	74,300		70,000	74,000
5.	9,587				
6.	20,345,678				
Exam	ple: 12.2319		12.2	10	12
7.	5.1309				
8.	0.561494				

WHAT IN THE WORLD?

Follo	ow your teacher's directions for (1) – (4).		
(1)		(2))
	is times greater than		
	is times greater than		
(3)	A 2021 estimate of the		was
	a.		b.
	C.		d.
(4)			
	a. b.		c. d.

5. Complete the table below.

		IIC manulation		
Country	rounded (nearest thousand)	rounded (one significant digit)	a whole number times a power of 10	US population is how many times larger? (estimate using
United States	331,003,000			simple, rounded values)
South Korea	51,269,000			
Australia	25,500,000			
Oman	5,107,000			
Iceland	341,000			

WHAT IN THE WORLD?

Continued

Use the given populations in problem 5 to write these numbers in scientific notation. Use two significant digits.

United States	Oman
South Korea	Iceland
Australia	

Write an estimate of each population in scientific notation.

VVIII	e an estimate of each population in scientifi	e notation.
7.	Egypt's population is about 2 times that of South Korea.	8. Russia's population is about 3 times that of South Korea.
9.	Mexico's population is about 2.5 times that of South Korea	10. Indonesia's population is about 10 times that of Australia.
11.	Colombia's population is about 10 times that of Oman.	12. Compare the populations of Iceland and Lebanon, which is about 6.8×10^6 people.

- 13. The two most populous countries in the world are India (1,380,193,000) and China (1,439,324,000).
 - a. Write population estimates for both countries in scientific notation, rounded to two significant digits.
 - b. Estimate the fraction of the total world population in China.
 - c. About what fraction of the total world population lives in these two countries combined?
- 14. Record the meaning of scientific notation in My Word Bank.

^{*}All given population estimates are from Worldometer, May, 2021, rounded to the nearest thousand.

PRACTICE 5

Without computing, fill in the blanks to make the expressions equivalent.

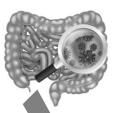
2.
$$55 \times 10^6$$
 and 5.5×10^6

Determine whether each number below is in scientific notation.

If **not**, write it in scientific notation.

3.
$$346 \times 10^5$$
 4. 2.25×10^6 5. 89.7×10^7 6. 0.14×10^{10}

Use symbols <, =, or > to compare each pair of numbers below. Show work or explain.


7.
$$1.5 \times 10^8$$
 _____ 451×10^5

8.
$$0.57 \times 10^7$$
 32 × 10⁶

- 9. Dr. Jerry Buss purchased a professional basketball team in 1979 for approximately \$67.5 million. At his death in 2013, the team was reportedly worth about \$1 billion.
 - a. Write each dollar amount as a single digit times a power of 10.
 - b. Write each value using scientific notation.
 - c. By approximately what factor did the team value grow over that time period?
- 10. Abel multiplied two large quantities on his calculator and got: 8.72 E12 Explain what his calculator is doing and the number this represents.
- 11. Frazier was trying to multiply $5,400,000,000,000,000 \times 75,000$ using his phone, but when he input the first number he got a message that 15 digits is the maximum allowed. Describe how he can multiply these numbers, and write the result using scientific notation.

A GUT FEELING

Follow your teacher's directions for (1) - (4).

Did you know that "gut health" is very important for things like your immunity, digestion, sleep, skin health, and even mental health? Your gut has trillions of living organisms in it (bacteria); some that are good, and some that are bad. More bacteria live in your gut than in the rest of your body!

(2) The average bacterium is between ____ and ___ micrometers .

1 micrometer (μ m) \approx ____ meters (m).

(3)

(4)

a.	b.	C.	d.

- 5. A 70 kg human has about 100 trillion bacteria in their gut that weigh a total of about 200g (the approximate weight of a medium sized mango).
 - a. Write 1 trillion in scientific notation.
 - b. Calculate this human weight if 1kilogram (kg) \approx 2.2 pounds (lb).
 - c. Jacob weighs about $\frac{2}{3}$ of this human weight. What is Jacob's weight (in lb)?
 - d. About how many bacteria are in Jacob's gut? Write in scientific notation.
- 6. Compare the number of bacteria in your gut to the number of people on earth.

PRACTICE 6

Determine whether each number below is in scientific notation.

If **not**, write it in scientific notation.

	,						
1.	346 × 10 ⁻⁵	2.	2.25×10^{-6}	3.	89.7×10^{-4}	4.	0.14×10^{-3}

Use symbols <, =, or > to compare each pair of numbers below. Show work or explain.

Complete the table below.

	note the table belo	
	Number pairs	Write each as a single digit times a power of 10. Circle the greater number. How many times greater is the circled quantity?
7	0.002×10^{-4}	
7.	200×10^{-6}	
8.	60 × 10 ⁻⁴	
0.	0.3×10^{-3}	
9.	0.08×10^{-3}	
Э.	400 × 10 ⁻⁵	

10. Mazie multiplied two small quantities on her calculator and got: Explain what her calculator is doing and what number this represents.

4.61 E-9

BIG AND SMALL JIGSAW

1. Discuss with your group: about how many times greater is 5.1 x 10⁷ than 1.9 x 10⁻⁵?

Weight conversions	1,000 mg = 1 g	1,000 g = 1 kg	1,000 kg = 1 metric ton
Length conversions	10 mm = 1 cm	1,000 mm = 1 m	1,000 m = 1 km

2	Your teacher	will aive v	our aroun	a card. Co	py the information.
∠.	Tour leadilei	will give yo	oui group	a caru. Co	py the information.

We have the _____. Weight: _____; Length:

3. With your group, convert measurements to at least one different unit and also to scientific notation.

Weight:

Length:

4. Partner with someone outside your group to compare a BIG and SMALL animal/object.

We are comparing a BIG _____

and a SMALL_____

How many times heavier is the BIGGER one than the SMALLER one?

How many times longer is the BIGGER one than the SMALLER one?

5. Partner with someone else outside your group to compare BIG and SMALL.

We are comparing a BIG _

_____ and a SMALL _____.

How many times heavier is the BIGGER one than the SMALLER one?

How many times longer is the BIGGER one than the SMALLER one?

6. Return to your original group to share and compare. Make corrections as needed.

PRACTICE 7: EXTEND YOUR THINKING

Perform each operation below. Write final results in scientific notation.

CITO	m each operation below. Write final resul	is in solutino notation.
1.	$(3.4 \times 10^{-4}) \bullet (2 \times 10^{8})$	2. (0.00000004) • (21,000,000,000)
3.	(9.1×10 ⁻¹⁶) • (1,000,000,000)	4. (7.2×10 ¹²) • (0.000000002)
5.	$\frac{2.6 \times 10^{24}}{1.3 \times 10^{14}}$	6. $\frac{1.3 \times 10^{-8}}{2.6 \times 10^{12}}$
7.	109 + 109 + 109 + 109 + 109 + 109 + 109	8. $(5.4 \times 10^6) - (3.1 \times 10^5)$

- 9. An internet search in 2021 showed that LeBron James earned \$44.5 million. At the same time, the median salary for a middle school teacher in the US was \$60,810 per year.
 - a. Write both amounts as numbers rounded to two significant digits.
 - b. Write both amounts in scientific notation.
 - c. James makes approximately how many times more money than a middle school teacher in the US?
- 10. Go back to What in the World? The Earth's population was approximately _____

The number of ants on Earth is approximately 10 trillion. Write both numbers rounded to a single digit times a power of 10. Then estimate the number of times the ant population is greater than the Earth's population.

EXPONENTS AND ROOTS

We will work with squares, square roots, cubes, and cube roots of rational numbers, and solve equations involving variables squared and cubed.

[8.EE.2; SMP1, 3, 4, 5, 6]

GETTING STARTED

Complete the table of squares and cubes below.

T. Compicio i	ino table of eq	uares ariu cui	ood bol		
number (<i>n</i>)	4	0.4	$\frac{1}{4}$	-4	-0.4 $-\frac{1}{4}$
squared (<i>n</i>) ²					
cubed (<i>n</i>) ³				K	

Make conjectures by filling in each blank with positive or negative.

2. A positive number squared is _____.

3. A positive number cubed is _____.

4. A negative number squared is ______.

5. A negative number cubed is _____.

Compute.

6. $\sqrt{25}$ 7.	$\sqrt{0.25}$	8. $\sqrt{\frac{1}{25}}$
-------------------	---------------	--------------------------

9. $\sqrt[3]{y}$ may be read the "third root of y" or the "cube root of y." It may be thought of as the answer to the question, "what number to the third power equals y?" Write a numerical equation that relates the fact that $(4)^3 = 64$ using this notation.

10. Record the meanings of <u>cube of a number</u>, <u>cube root</u>, and <u>radical expression</u> in **My Word Bank**.

MORE EXPLORING WITH EXPONENTS AND ROOTS

1. Complete the table of squares and cubes below.

1. Complete the table of squares and cabes below.								
number (<i>n</i>)	$\frac{5}{4}$	-1 ³ / ₄		1.6	-2.5			
squared (n) ²								
cubed (<i>n</i>) ³								

- 2. Why can the cube of a number be negative, while the square of a number cannot?
- 3. Why can't $\sqrt{-25}$ be calculated?
- 4. Use a calculator to find an approximate value for $3\sqrt{2}$.

Demonstrate whether each equation is true or false.

5.
$$\sqrt{25} + \sqrt{1} = 5 + 1$$

$$\sqrt{25} + \sqrt{1} = \sqrt{25 + 1}$$

7.
$$2\sqrt{5} = \sqrt{10}$$

Compute each cube root. Recall that $\sqrt[3]{64} = 4$ because $4 \cdot 4 \cdot 4 = 64$.

8.	3√8	9.	₃ √-8	10.	³ √27	11.	³ √-27

12. Why can $\sqrt[3]{-1}$ be written as an integer, but $\sqrt{-1}$ cannot?

PRACTICE 8

Compute.

1.	$(\sqrt{7})^2$	2.	$\sqrt{\frac{4}{9}}$	3.	3√8	4.	$(\sqrt[3]{7})^3$
5.	$(\sqrt{25})(\sqrt{49})$	6.	³ √64	7.	3√-8	8.	³ √-27
9.	$(\sqrt{12})(\sqrt{12})$	10.	∛1000	11.	$\sqrt[3]{\frac{1}{27}}$	12.	3 <mark>8</mark> √27
13.	2√16	14.	∛0.008	15.	∛-1	16.	$\left(\sqrt[3]{3\frac{3}{8}}\right)$

- 17. True or false? Explain. $\sqrt{4} + \sqrt{4} = \sqrt{8}$
- 18. Explain why the square root of a negative integer can never be an integer.
- 19. The cube root of a negative integer sometimes has an integer result and sometimes does not. Support this statement with numerical examples.

Explain each relationship with a sketch and numbers. Use squares, square roots, cubes, and cube roots.

20. The area of a square and its side lengths.	21. The volume of a cube and its edge lengths.
--	--

SOLVING EQUATIONS WITH EXPONENTS

Follow your teacher's directions for (1) - (4).

(1)

(4	۷,

Solve each equation below. If rational number solutions do not exist for *x*, leave them in square root or cube root form.

5. $x^2 = 64$ 6. $x^2 = \frac{1}{4}$	7. $x^2 = 0.04$	8. $x^2 = 5$
9. $x^3 = 27$ 10. $x^3 = \frac{1}{8}$	11. $x^3 = 0.001$	12. $x^3 = 3$

13. Consider the equation $x^2 = 36$. Substitute the following numerical expressions into this equation to prove that they all make the equation true.

value	work	value	work
6	() ² = • = 36	√36	$(\sqrt{\underline{}})^2 = \underline{} = \underline{}$

PRACTICE 9

Solve each equation below. If rational number solutions don't exist for x, leave in square root or cube root form.

Of Cube	e root form.					
1.	$x^2 = 100$	2.	$x^2 = \frac{1}{64}$	3.	$x^2 = 0.09$	$4. \qquad x^2 = 7$
5.	$x^2 = 144$	6.	$x^2 = \frac{49}{81}$	7.	$x^2 = 0.36$	8. $x^2 = 11$
9.	$x^3 = 64$	10.	$x^3 = \frac{1}{64}$	11.	$x^3 = 0.008$	12. x ³ = 7
13.	$x^3 = 125$	14.	$x^3 = \frac{8}{27}$	15.	$x^3 = 0.064$	16. $x^3 = 11$

17. Consider the equation $x^3 = 216$. Substitute the following numerical expressions into this equation to prove that they all make the equation true.

value	work	value	work
6	() ³ = = 216	³ √216	=•=

18. Write equations for which x = 2 is a solution.

a. In the form $ax = b$, where a and b are integers. b. In the form $x^2 = b$, where b is an integer. c. In the form $x^3 = b$, where b is an integer.			
		•	•

19. Explain why $x^3 = -1$ has a solution while $x^2 = -1$ does not.

REVIEW

WHY DOESN'T IT BELONG?: THE ALGEBRA OF EXPONENTS AND ROOTS

For each set below, choose at least two of the four entries and explain why each doesn't belong with the others.

Set 1 Simplify each expression.

\mathbf{A} $(x^2)^2$	B x ⁸ • x ⁻⁴	
$\frac{\mathbf{C}}{x^6}$	D <u>x</u> -4 <u>x</u> -8	

Set 2 Write each expression with a base to a non-negative exponent.

Set 2 White each expression with a base to a non-negative expension.					
Δ	В				
$x^4 \bullet x^{-4}$	$\frac{1}{x^{-4}}$				
$(x^2)^{-1}$	D x-4				

Set 3 Simplify the two expressions and solve the two equations.

A	В	
√9	∛-27	
С	D	
$x^2 = 9$	$x^3 = 27$	

POSTER PROBLEMS: THE ALGEBRA OF EXPONENTS AND ROOTS

Part 1:	Your	teacher	will	divide v	vou into	arouns
I dit I.	i Oui	todonion	V V 111	aiviac j	you lillo	groups.

- Identify members of your group as A, B, C, or D.
- Each group will start at a numbered poster. Our group start poster is _____.
- Each group will have a different colored marker. Our group marker is _____.

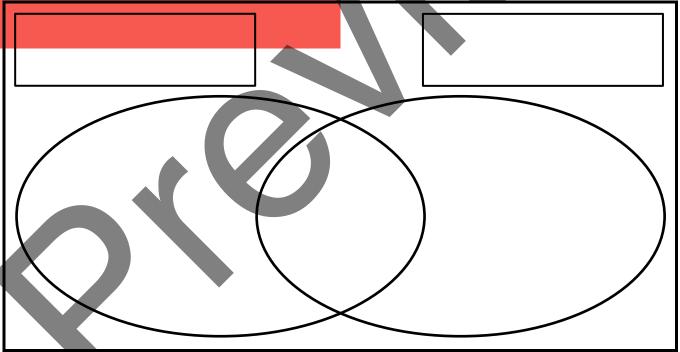
Part 2: Follow your teacher's directions. Do the problems on posters. Use R3 for reference.

Poster 1 (or 5)	Poster 2 (or 6)	Poster 3 (or 7)	Poster 4 (or 8)
The Shake	The Jiffy	The Outhouse	The Attogram

- A. Using the info provided by your teacher, read about your group's unit of measure. To what common measurement is this related? Write this number in decimals, using its common measurement.
- B. Read about this group's unit of measure. Write this number in scientific notation, using its common measurement.
- C. Write a problem using this structure: "How many times longer/bigger is a [something measured in time, area, or weight] than a(n) [corresponding teeny measurement]?"
- D. Solve the problem that was written in above in problem C.

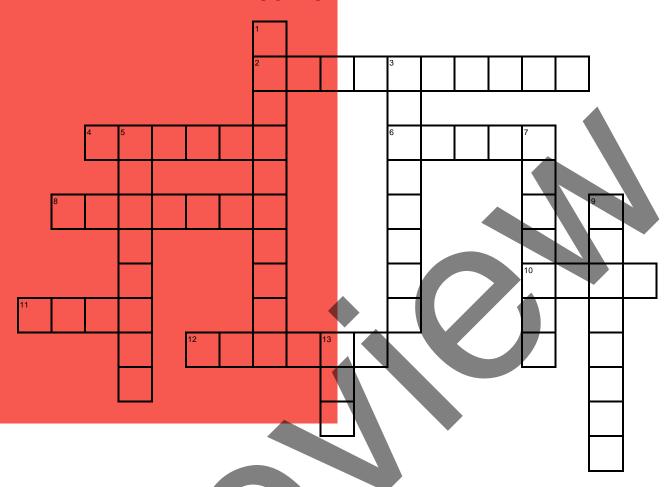
Part 3: Return to your seats. Work with your group, and show all your work.

- 1. Read about the quasihemidemisemiquaver. Say it, and rewrite it showing important syllable breaks.
- 2. A quaver is an eighth note. Each "prefix" is a signal to successively halve the note. Show why quasihemidemisemiquaver means 128th note.


3. How is a quasihemidemisemiquaver related to the opening problem about folding paper?

MATCH AND COMPARE SORT: THE ALGEBRA OF EXPONENTS AND ROOTS

1. Individually, match words with descriptions. Record results.


	Card set △			Card set	
Card number	word	Card letter	Card number	word	Card ▲ letter
I			I		
II			II		
III			III		
IV			IV		

2. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

3. Partners, choose another pair of numbered matched cards and discuss the attributes that are the same and those that are different.

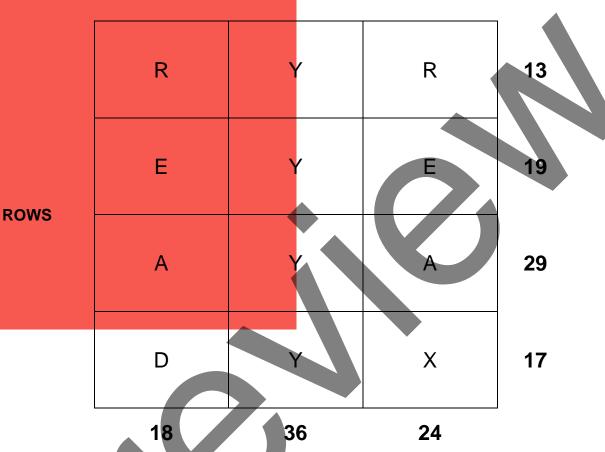
VOCABULARY REVIEW

Across

2 hypothesis, educated guess

- 4 A number to the second power
- 6 Rule for exponents where bases are same and exponents are multiplied
- 8 Rule for exponents where bases are the same and exponents are added
- 10 27 is an example of a perfect _____
- 11 In 5⁻², 5 is the _____
- 12 In 9•9•9, 9 is a _____

<u>Down</u>


1 The product of a number between 1 and 10 and power of 10 is in _____ notation

- 3 In 5⁻², -2 is the _____
- 5 Rule for exponents where bases are the same and exponents are subtracted
- 7 $\sqrt[3]{8}$, \sqrt{x} , and $2\sqrt{16}$ are _____ expressions
- 9 The ___ of 27 is 3 (two words)
- 13 A number to the zero power

SPIRAL REVIEW

1. **READY-X.** Solve for the values of R, E, A, D, Y, X. Sums of rows and columns are indicated at the end of each row and column.

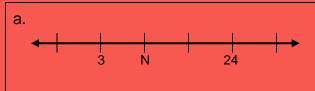
COLUMNS

R =	E	A =	D =	Y =	X =	_
-----	---	-----	-----	-----	-----	---

2. Solve each equation below.

a. $4(m-7) = -12$	b. $0 = 35(0.75 + n)$

SPIRAL REVIEW

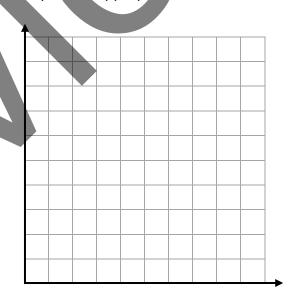

Continued

3. Solve for y in terms of x.

a.
$$2x + y = 14$$

b.
$$2y - x = 14$$

4. Find the value of N.



5. The table below has some costs and quantities for purchasing ride tickets at the fair.

a. Complete the table.

number of tickets (x)	cost in \$ (<i>y</i>)	cost (\$) ticket
1	1.5	
5	7.5	
10		
15		
20		

b. Graph with appropriate labels.

c. Write an equation to represent the situation.

d. Use evidence from these representations to explain whether this situation represents a proportional relationship.

REFLECTION

1. **Big Ideas**. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

	ormational geometry to congruence and similarity (8.G.A)		d applications of volume to ers, cones, and spheres)	
Explo	ore bivariate data (8.SP.A)	С	Complete the real number (8.NS.A)	rsystem
one va	near equations in ariable and linear s in two variables (8.EE.C)	C	Discover and apply prope lines, angles, and triangle the Pythagorean theorem (8.G.B)	s, including
	ate, analyze, and use linear unctions in problem solving (8.EE.B, 8.F.AB)		ore exponents and roots, and very small quantities A)	l very large

Give an example from this unit of one of the connections above.

2. **Unit Progress.** Go back to **Monitor Your Progress** on the cover and complete or update your responses. Explain something you understand better now than before or something you would still like to work on.

3. **Mathematical Practice.** Explain how repeated calculations revealed a pattern that could be generalized to a rule [SMP 8]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

4. **Making Connections.** Describe interesting idea (story) that was revealed by analyzing large or small numbers in this unit.

STUDENT RESOURCES

Word or Phrase	Definition
conjecture	A <u>conjecture</u> is a statement that is proposed to be true, but has not been proven to be true nor to be false.
	After creating a table of sums of odd numbers such as $1 + 3 = 4$, $1 + 5 = 6$, $5 + 7 = 12$, $3 + 9 = 12$, etc., we may make a conjecture that the sum of any two odd numbers is an even number. This conjecture can be proven to be true.
cube of a number	The <u>cube of a number</u> n is the number $n^3 = n \cdot n \cdot n$.
	The cube of -5 is $(-5)^3 = (-5)(-5)(-5) = -125$.
cube root	The <u>cube root</u> of a number n is the number whose cube is equal to n . That is, the cube root of n is the value of x such that $x^3 = n$. The cube root of n is written $\sqrt[3]{n}$.
	The cube root of -125 is $\sqrt[3]{-125} = -5$, because $(-5)^3 = (-5)(-5)(-5) = -125$.
exponent notation	The exponent notation b^n (read as " b to the power n ") is used to express n factors of b . The number b is the base, and the natural number n is the exponent. Exponent
	notation is extended to arbitrary integer exponents by setting $b^0 = 1$ and $b^{-n} = \frac{1}{b^n}$. $2^3 = 2 \cdot 2 \cdot 2 = 8$ (the base is 2 and the exponent is 3)
	$3^2 \cdot 5^3 = 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 = 1,125$ (the bases are 3 and 5)
	$2^{0} = 1$ $2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$
radical expression	A <u>radical expression</u> is an expression involving a root, such as a square root. $\sqrt{20}$ and $5\sqrt{3}$ are radical expressions.
scientific notation	Scientific notation for a positive number represents the number as a product of a decimal between 1 and 10 and a power of 10. It is typically used to write either very large numbers or very small numbers.
	In scientific notation, the number 245,000 is written as 2.45×10^5 . In scientific notation, the number 0.0063 is written as 6.3×10^{-3} .

Numbers Squared and Cubed

Why do we say that a number raised to the second power is "squared"? The reason has to do with the area formula for squares. The area of a square of side length s is given by

area =
$$s \cdot s = s^2$$
.

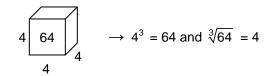
A square with side length 4 units has area "4 squared" = 4^2 = 16 square units.

What about "square root" – where does that term come from?

Here the reason is that a "root" can also refer to the solution of an equation. A "square root" has to do with finding the side length of a square of a given area; that is, of solving the equation $s^2 = A$. For a given area A, the side length s of the square with area A is side length $s = \sqrt{A} =$ "square root of A."

A square with area 16 square units has side length $\sqrt{16}$ = 4 units.

$$4$$
 $\rightarrow 4^2 = 16 \text{ and } \sqrt{16} = 4$


Why do we say that a number raised to the third power is "cubed"? In this case, the answer has to do with the volume formula for cubes. The volume of a cube with side length s is given by

volume =
$$s \cdot s \cdot s = s^3$$

A cube with side length 4 units has volume "4 cubed" = 4^3 = 64 cubic units.

In turn, a "cube root" has to do with finding the side length of a cube of a given volume, that is, of solving the equation $s^3 = V$. For a given volume V, the side length s of the cube with volume V is side length $= s = \sqrt[3]{V} =$ "cube root of V."

A cube with volume 64 cubic units has side length $\sqrt[3]{64} = 4$ units.

Although we assume here that V is positive, the cube root of a negative number can be found by solving the equation, $s^3 = V$. The square root of a negative number is not a real number.

Squaring a number and finding the square root of a number are inverse operations. Similarly, cubing a number and finding the cube root of a number are inverse operations.

Thi	Three Facts and Three Rules for Exponents					
Definitions a	and Rules		Example			
Meaning of positive exponent:	$x^m = x \bullet x \bullet \dots \bullet x$ (1	n factors)	$3^4 = 3 \cdot 3 \cdot 3 \cdot 3$ (4 factors of 3)			
Fact about zero as an exponent:	$x^0 = 1, \ x \neq 0$		$3^0 = 1$, (00 is not defined)			
Fact about a negative exponent:	$x^{-a}=\frac{1}{x^a}, \ x\neq 0$		$3^{-2} = \frac{1}{3^2},$ (0 cannot be in the denominator because division by 0 is not defined)			
Product rule for exponents:	$x^a \bullet x^b = x^{a+b}$		$3^2 \cdot 3^1 = 3 \cdot 3 \cdot 3 = 3^{2+1} = 3^3$			
Power rule for exponents:	$(x^a)^b = x^{a \cdot b}$		$(3^2)^3 = 3^2 \cdot 3^2 \cdot 3^2 = 3^{3 \cdot 2} = 3^6$			
Quotient rule for exponents:	$\frac{x^a}{x^b} = x^{a-b}, \ x \neq 0$		$\frac{3^4}{3^6} = \frac{3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = 3^{4-6} = 3^{-2},$ (0 cannot be in the denominator because division by 0 is not defined)			

The three rules above apply to expressions with the same base numbers. For example: $5^3 \cdot 4^2 = (5 \cdot 5 \cdot 5) \cdot (4 \cdot 4)$, and the product rule does not apply.

Making Sense of Zero and Negative Exponents

These patterns show that the definitions for zero and negative exponents are reasonable.

Pattern: Divide by 2	Result of the division	Pattern as a product	Pattern in exponent form
	Start with 8	2•2•2	2 ³
8 ÷ 2	4	2•2	2 ²
4 ÷ 2	2	2	21
2 ÷ 2	1	1	2º
1 ÷ 2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2^1}$ or 2^{-1}
$\frac{1}{2} \div 2$	1/4	$\frac{1}{2 \cdot 2}$	$\frac{1}{2^2}$ or 2^{-2}
$\frac{1}{4} \div 2$	1 8	$\frac{1}{2 \bullet 2 \bullet 2}$	$\frac{1}{2^3}$ or 2^{-3}

	Scientific Notation					
Given number	Related decimal between 1 and 10	Power of 10	Number in scientific notation	Reasoning		
120,000,000	1.2	10 ⁸	1.2 × 10 ⁸	The given number is 10 ⁸ times 1.2; adjust place values by multiplication.		
0.0000345	3.45	10 ⁻⁵	3.45 × 10 ⁻⁵	3.45 is 10 ⁵ times the given number; adjust place values by multiplication.		

Some of the benefits of scientific notation:

- (1) Scientific notation is useful for writing numbers with very large or very small values in a compact way.
- (2) The power of 10 gives an immediate clue to the relative size of the number.

Error alert!

When comparing numbers in scientific notation such as 2.5×10^{12} and 8.76×10^{8} , a common mistake is to focus on the fact that 8.76 > 2.5. Focus on the exponent!

$$2.5 \times 10^{12} = 2,500,000,000,000$$

$$8.76 \times 10^{8} = 876,000,000$$

COMMON CORE STATE STANDARDS

	STANDARDS FOR MATHEMATICAL CONTENT				
8.EE.A	Work with radicals and integer exponents.				
8.EE.1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$.				
8.EE.2	Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.				
8.EE.3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^8 and the population of the world as 7×10^9 , and determine that the world population is more than 20 times larger.				
8.EE.4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.				

STANDARDS FOR MATHEMATICAL PRACTICE	
SMP1	Make sense of problems and persevere in solving them.
SMP2	Reason abstractly and quantitatively.
SMP3	Construct viable arguments and critique the reasoning of others.
SMP4	Model with mathematics.
SMP5	Use appropriate tools strategically.
SMP6	Attend to precision.
SMP7	Look for and make use of structure.
SMP8	Look for and express regularity in repeated reasoning.

