\qquad Date \qquad

LINEAR EQUATIONS AND SYSTEMS 1

Parent (or Guardian) signature \qquad
MathLinks: Grade 8 (2 ${ }^{\text {nd }}$ ed.) ©CMAT
Unit 7: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.

CAN YOU SOLVE THIS EQUATION?

Solve this equation for x using any strategy. If you want to use an organized guess-and-check strategy, use the table below.

$$
-4(x-2)+6=20-2(x-1)-7
$$

SOLVING SYSTEMS BY GRAPHING

We will solve systems of equations by graphing; and understand that a system can have exactly one, zero, or infinitely many solutions. We will use substitution to rewrite systems of equations as a single equation and verify solutions.
[8.EE.8a, 8.EE.8b, 8.EE.8c, 8.F.2, 8.F.3, 8.F.4; SMP1, 2, 3, 4]

GETTING STARTED

Write each equation below in slope-intercept form, complete the tables, and graph the equations on the coordinate plane to the right.

3. In the tables above, circle the ordered pair in problem 1 and the ordered pair in problem 2 that are the same.
4. At what point do the two lines intersect on the graph?
5. Record the meanings of slope-intercept form and point of intersection in My Word Bank.

WHAT IS A SYSTEM OF EQUATIONS?

1. When a linear equation in two variables is graphed, what does the line represent?
2. When two linear equations are graphed in the same coordinate plane, and they intersect in one point, what does that point represent?
3. Record the meaning of a system of linear equations in My Word Bank.

For each system below, graph the lines on the same coordinate plane, and then write the solution as an ordered pair. Recall that equations in slope-intercept form tend to be easier to graph.

A system of two linear equations in two variables has one solution, no solution, or infinitely many solutions.
6. The system of linear equations to the right has exactly one solution.
a. Circle the solution.
b. Describe the slopes of these lines.
7. The system to the right has no solutions.
a. Describe the lines and how their slopes relate to one another.
b. Why do you think the graph of the system has no solutions?
8. Below is a system of equations.

a. Change the second equation to slope-intercept form.
b. What do you notice about these two equations?
c. Graph both lines and describe what this graph looks like.

d. Why do you think we say that this system has infinitely many solutions?
9. Consider the pair of equations in Getting Started a system of linear equations. Does this system have one solution, no solutions, or infinitely many solutions?

PRACTICE 1

1. A system of equations represented by two parallel lines has \qquad solution(s).
2. A system of equations represented by lines that coincide (equivalent equations) has solution(s).
3. A system of equations represented by lines intersecting in one point has solution(s).

For the systems of equations below, first make sure equations are in slope-intercept form. Then graph the lines, determine the number of solutions, and write the solution(s), if any.

$$
\left\{\begin{array}{l}
3 y=9 x+3 \\
y=3 x-5
\end{array}\right.
$$

5.

6. Sketch the graph of a system of linear equations with exactly one solution such that both lines have negative slopes.

PRACTICE 2

1. Coop looked at the system below and said, "I don't need to graph these lines. I know that there's no solution." Explain how Coop knows this.

$$
\left\{\begin{array}{l}
y=x+2 \\
y=x+1
\end{array}\right.
$$

2. Smitty looked at the system below and said, "I don't need to graph these lines. I know that there are infinitely many solutions." Explain how Smitty knows this.

$$
\left\{\begin{array}{l}
y=3 x+6 \\
y=3(x+2)
\end{array}\right.
$$

Sketch the graphs of lines that fit each description below. Then describe the type of solution(s) for each system.

USING SUBSTITUTION

Follow your teacher's directions for (1) - (6).

Kim and her friend Jordan meet for lunch. Kim tells Jordan about the 100 Mile Walking Challenge she's been doing for a while. "I already have 40 miles, and starting tomorrow, I'm going to walk 8 miles per day," says Kim. "You should join the challenge." Jordan accepts and says, "Okay, you're way ahead of me, so l'm going to walk more miles per day to try to catch up."
(4)

USING SUBSTITUTION
Continued

8. If Kim and Jordan each continue to walk at their same pace, on what day have they walked the same number of miles?

How many miles is this?

Use substitution and the two equations from problem 6 to write one equation in x. Then check to see if the x-value (day number from problem 8) is a solution to this equation.
10. Record the meaning of substitution in My Word Bank.

PRACTICE 3

Naomi and Karolina are saving for a skateboard. Naomi has $\$ 100$ in the bank and will save $\$ 30$ each month. Karolina has $\$ 40$ in the bank and will save $\$ 45$ each month.

1. Complete the table below, graph the data input-output equations.

ESTIMATING SOLUTIONS TO SYSTEMS

Follow your teacher's directions.

- Emmett and Gerry are traveling down the same street to the park near their school.
- They leave at the same time from different locations.
- Someone is taking pictures from a window above street level every 6 seconds so that they can keep track of the distance they travel over time.

PRACTICE 4

Graph each system of equations. Make sure all equations are in slope-intercept form first.

3. Ike looked at the graphs and said, "I can't tell for sure what these solutions are." Explain why you think Ike said this.
4. Use estimation and substitution to complete the table below.

	Problem 1	Problem 2
Estimate a solution from the graph.		
Write one equation in x using substitution.		
Substitute the estimated x-value into the equation and simplify both sides.		
What does the result from directly above tell you about your estimate?		

PRACTICE 5

Each pair of points below defines a line. Complete the table.

SOLVING EQUATIONS USING CUPS AND COUNTERS

We will solve equations using a model and balance techniques.
[8.EE.7a, 8.EE.7b; SMP6, 7]

GETTING STARTED

Write all equations below in slope intercept form if needed. Then use substitution to write one equation in x for each.
1.

$$
\left\{\begin{array}{l}
y-x=4 \\
2 x-y=-1
\end{array}\right.
$$

Solve using mental math. Substitute a value in for the variable to make each equation true.

3.	$24+x=100$	4.	$30=5 x+15$
	$-39=13 x$	$6 . \quad-3(x-2)=-24$	

7. Record the meanings of solution to an equation and solve an equation in My Word bank.

8. Record the meaning of zero pair in My Word Bank.

PRACTICE 6

To the right is a balanced scale with three positive counters on each side. For each action below, describe what happens to this original picture, and write a number sentence result. Make sketches as desired.
to represent the

1. Four positive counters are added to each side.
2. Two negative counters are added to each side.

To the right is a balanced scale with three negative counters on each side. For each action below, describe what happens to this original picture, and write a number sentence to represent the result. Make sketches as desired.
5. One positive counter is added to each side.
2. Four positive counters are added to the left side.
4. Six cups are added to each side.
6. One positive counter is added to left side.
8. Five upside-down cups are added to each side.

For each cups and counters equation pictured below, write the equation as pictured, perform the indicated operation, and then write the new, resulting equation.

10. Equation pictured: \qquad
Add cups to create zero pairs so that there are no upside down cups on the right side.

Resulting equation: \qquad

Follow your teacher's directions for (1) - (4).
When solving equations using cups and counters:

- Build each equation.
- Think: Can I do anything to either side (individually)?
- Think: Can I do anything to both sides (together)?
- Continue the process until the equation is solved.
- Write the solution and check it using substitution.
- Make a drawing of the process.

Build the equation below, find the solution, draw, and check..

$5.4(x-1)=2(x+4)$	6.	

Follow your teacher's directions for (1) - (6).

Build each equation below, find the solution, draw, and check.

$7.5-3 x-2=-(x-3)+4$	8.	$-3(x-1)=-2 x-3-2 x$

PRACTICE 7

Solve by building each equation below. Record drawings. Check solutions.

SOLVING EQUATIONS ALGEBRAICALLY

We will solve equations algebraically, and understand than an equation can have exactly one, zero, or infinitely many solutions.
[8.EE.7a, 8.EE.7b; SMP3, 5, 7, 8]

GETTING STARTED

1. Consider the following expression: $-3 x+2(x+1)-x-6$
a. Make a cups and counters sketch of the \quad b. Write the expression in its simplest expression.
form.
c. Consider the expression in part b. To the right, write an equation that sets th expression equal to 0 . Then solve it using any method.

What method did you choose?
2. Solve the equation $-x-x=-8$ using any method.

What method did you choose?
3. Solve the equation $-x=-8+x$ using any method.

What method did you choose?
4. How are the equations in problems 2 and 3 related?

FROM DRAWINGS TO PROCEDURES
Follow your teacher's directions.

| (1) \quad Equation with work shown | |
| :--- | :--- | :--- |
| (2) | |

PRACTICE 8

Solve each equation below algebraically. Check by substitution. Build or draw as needed.

1. $x-4=2 x+1$	$2(x-1)=2 x+1+3 x$	
	$-3 x-6=3-6 x$	
3.		

DO ALL EQUATIONS HAVE EXACTLY ONE SOLUTION?

Draw a picture of each equation below and then explain what you think each person meant.

1. Sal looked at the equation $x+3=x+1$ and said, "I don't think this can be solved!"
2. Yesenia looked at the equation $2 x+2=2(x+1)$ and said, "Every value I substitute into this equation makes it true!"
3. Explain what it means for an equation to above in your explanation.
4. Explain what it means for an equation to ave infinitely many solutions. Refer to one of the problems above in your explanation.

A linear equation in one variable has
one solution, no solution, or infinitely many solutions.
Solve each equation below. Show your work and clearly state any solution(s).

5.	$-2(x+4)=2(-4-x)$	6.

PRACTICE 9

Solve algebraically. Check. Indicate if there are no solutions or infinitely many solutions.

REVIEW

POSTER PROBLEMS: LINEAR EQUATIONS AND SYSTEMS 1

Part 1: Your teacher will divide you into groups.

- Identify members of your group as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D .
- Each group will start at a numbered poster. Our group start poster is
- Each group will have a different colored marker. Our group marker is

Part 2: Do the problems on the posters by following your teacher's directions.
\(\left.$$
\begin{array}{l}\text { Poster } 1 \text { (or 5) } \\
\hline \begin{array}{l|l|l|}\hline y-1=5 x \\
y-2 x=4\end{array}
$$

\hline Poster 2 (or 6)

A. Copy the problem. Write both equations in slope-intercept form.

-4 x+y=0\end{array}\right\}\)| $y-x=6$ |
| :--- |
| B. Solve the system by graphing. Write the solution clearly. |
| C. Use substitution to write one equation in x |

Part 3: Return to your seats. Work with your group.
For this system of equations, write both in slope-intercept form, and then explain how you know what the solution(s) is/are without graphing.

BIG SQUARE PUZZLE: LINEAR EQUATIONS AND SYSTEMS 1

Your teacher will give you a puzzle to assemble.
Problems 1 and 2 each begin with descriptions of equations from the puzzle. Fill in the blanks with those equations, and finish the explanations.

1. The equation that has no solution is \qquad because...
2. The equation that has infinitely many solutions is \qquad because...
3. Choose any equation from the Bíg Square Puzzle other than the two above, copy it below, and solve it by drawing a cups and counters diagram.

OPEN MIDDLE PROBLEMS: LINEAR EQUATIONS AND SYSTEMS 1

An equation has the following structure:

Using the digits 1 to 9 at most one time each, place a digit in each box to create an equation:

VOCABULARY REVIEW

3 a property: $3(x-4)=3 x-12$

5 algebraic strategy for solving a system of equations

6 find a value to make an equation true

7 location where system of equations intersect to show a solution
one positive and one negative counter together (two words)

11 Systems of equations with no solutions have the same \qquad _. number of solutions when two lines intersect

12 Zero is the additive \qquad .

SPIRAL REVIEW

1. READY-X. Solve for the values of R, E, A, D, Y, X. Sums of rows and columns are indicated at the end of each row and column.

2. Solve each equation.

3. Solve for y in terms of x.

a. $2 x+y=14$	b. $2 y-x=14$

SPIRAL REVIEW

Continued

4. Find the slant height (x) and the volume of the cone to the right if the diameter is 10 cm and the height is 12 nearest tenth. Hint: Use the Pythagorean cm . Round to the slant height.

Theorem to find the

5. Find the height and the volume of the cones below. Round to the nearest tenth. (Cones not drawn to scale.) a.

6. Find the height of each cylinder below. (Cylinders not drawn to scale.)
a. The cylinder below has a volume of $791.28 \mathrm{ft}^{3}$. Use $\pi=3.14$.

b. The cylinder below has a volume of $1,386 \mathrm{~cm}^{3}$. Use $\pi=\frac{22}{7}$

7. Graph each set below.

8. Allie and Nico agree that the value of $\sqrt{45}$ is between 6 and 7 . Allie thinks that $\sqrt{45}$ is closer to 6. Nico thinks that $\sqrt{45}$ is closer to 7 .
a. Which student do you think is more accurate? Explain.
b. What would you say to the other student to help understand the error?

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before.

3. Mathematical Practice. Reflect on using cups and counters to solve equations. If they were helpful, how so? If not, why not [SMP5]? Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.
4. Making Connections. How are the number of solutions to an equation in one variable similar to the number of solutions to a system of equations in two variables?

STUDENT RESOURCES

Word or Phrase

meet.
slope-intercept \quad The slope-intercept form of the
The equation $y=2 x+3$

Definition
A point of intersection of two lines is a point where the lines

The two straight lines in the plane with equations
$y=-x$ and $y=2 x-3$ have point of intersection (1, -1).

solution to an equation	A solution to an equation involving when substituted, make the equa

The value $x=8$ is a solution to the equation $10+x=18$. If we substitute 8 for x in the equation, the equation becomes true: $10+8=18$.
solve an equation To solve an equation refers to finding all values for the variables in the equation that, when substituted, make the equation true. Values that make an equation true are called solutions to the equation.

To solve the equation $2 x=6$, one might think "two times what number is equal to 6 ?" Since $2(3)=6$, the only value for x that satisfies this condition is 3 .
Therefore 3 is the solution.

substitution	Substitution refers to replacing a value or quantity with an equivalent value or quantity. If $y=x+5$, and we know that $x=3$, then we may use substitution to rewrite the first equation to get $y=3+5$. If $y=x+10$, and we know also that $y=2 x+4$, then we may use substitution to write one equation in x to get $x+10=2 x+4$.
system of linear equations	A system of linear equations is a set of two or more linear equations in the same variables. An example of a system of linear equations in x and y : $\left\{\begin{array}{l} x+y=1 \\ x+2 y=4 \end{array}\right.$
ero pair	In the signed counters model, a positive and a negative counter together form a zero pair. Let "+" represent a positive counter, and let "-" represent a negative counter. Then the following is an example of a collection of (three) zero pairs.

Systems of Linear Equations

A system of equations is a set of two or more equations in the same variables. A solution to the system of equations consists of values for the variables which, when substituted, make all equations simultaneously true.

A system of linear equations has exactly one solution, infinitely many solutions, or no solution.

Solving a System of Linear Equations by Graphing

To solve a system of equations by graphing, graph both lines on the same set of axes and observe the point(s) of intersection, if any.
Solve by graphing: $\left\{\begin{array}{l}2 x+y=5 \\ x+2 y=4\end{array}\right.$

1. Change each to slope-intercept form, $y=m x+b$
2. Graph each equation

3. Observe the intersection of the lines, $(2,1)$. This represents the solution to the system. In other words, these are the x - and y-values that satisfy both equations. Remember that not every system of equations has exactly one solution.
4. Check by substituting solutions in the original equations to be sure they are correct.

$$
\begin{aligned}
& 2 x+y=5 \rightarrow 2(2)+1=5 \text { (true) } \\
& x+2 y=4 \rightarrow 2+2(1)=4 \text { (true) }
\end{aligned}
$$

Properties of Arithmetic

Properties of arithmetic govern the manipulation of expressions (mathematical phrases). For any three numbers a, b, and c :
\checkmark Associative property of addition $a+(b+c)=(a+b)+c$
\checkmark Commutative property of addition $a+b=b+a$

Additive identity property (addition property of 0) $a+0=0+a=a$

Additive inverse property $a+(-a)=-a+a=0$
\checkmark Associative property of multiplication $a \bullet(b \bullet c)=(a \bullet b) \bullet c$
\checkmark Commutative property of multiplication $a \bullet b=b$ - a
\checkmark Multiplicative identity property (multiplication property of 1) $a \bullet 1=1 \bullet a=a$
\checkmark Multiplicative inverse property

lating addition and multiplication $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$ for any three numbers a, b, and c.

Properties of Equality

Properties of equality govern the manipulation of equations (mathematical sentences). For any three numbers a, b, and c :
\checkmark Addition property of equality (Subtraction property of equality) If $a=b$ and $c=d$, then $a+c=b+d$

Multiplication property of equality
(Division property of equality)
If $a=b$ and $c=d$, then $a c=b d$

Reflexive property of equality: $a=a$
Symmetric property of equality: If $a=b$, then $b=a$
\checkmark Transitive property of equality: If $a=b$, and $b=c$, then $a=c$

Solving Equations Using a Model 1

Solving Equations Using a Model 2

Using Algebraic Techniques to Solve Equations

To solve equations using algebra:

- Use the properties of arithmetic to simplify each side of the equation (e.g., associative properties, commutative properties, inverse properties, distributive property).
- Use the properties of equality to isolate the variable (e.g., addition property of equality, multiplication property of equality).

Check by substituting the solution into the original equation:

COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT

8.EE.C	Analyze and solve linear equations and pairs of simultaneous linear equations.
8.EE. 7	Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers). Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE. 8	Analyze and solve pairs of simultaneous linear equations: Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 . Solve real-world and mathematical problems leading to two linear equations in two variables.
8.F.A	Define, evaluate, and compare functions.
8.F. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give oxamples of functions that are not linear. For oxample, the function $A=s^{2}$ giving the area of a square as a function of its side longth is not linear bocause its graph contains the points (1,1), $(2,4)$ and $(3,9)$, which aro not on a straight line.
8.F.B	Use functions to model relationships between quantities.
8.F. 4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

STANDARDS FOR MATHEMATICAL PRACTICE

