\qquad Date \qquad

BIVARIATE DATA

	Monitor Your Progress	Page
My Word Bank		0
6.0 Opening Problem: Stacking Cups		1
6.1 Numerical Data - Construct scatter plots. - Describe various patterns of association in bivariate data. - Interpret and draw conclusions from scatterplots.	$\begin{array}{llll}3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0\end{array}$	3
6.2 Lines of Best Fit - Draw lines of best fit and estimate their equations. - Interpret the slope and y-intercept of linear models in the context of the data. - Use linear models to make predictions. - Explore the effect that potential outliers have on data patterns. - Distinguish between linear and nonlinear association.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ & & & \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	9
	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	20
Review		26
Student Resources		34

Parent (or Guardian) signature \qquad
MathLinks: Grade 8 (2 ${ }^{\text {nd }}$ ed.) ©CMAT
Unit 6: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for definitions and examples.
association

STACKING CUPS

Follow your teacher's directions for (1) - (3).
(1)

Number of cups (x)		1
Height in $\mathrm{cm}(y)$		

(2) Graph the data.
(3)

| 2 | 3 | 4 | | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

STACKING CUPS

Continued
4. The independent variable (input) is...

The dependent variable (output) is...
5. Describe the height increases in words.
6. Approximate the slope of the line drawn.
7. Write an input-output rule for the line drawn (an equation in x and y) that relates height to number of cups stacked.
8. Use your rule to estimate the height of a stack of 100 cups.

9. Eyen though you sketched a line to approximate the data, why do ordered pairs that correspond to non-whole-number x-values make no sense in this context?

NUMERICAL DATA

We will construct scatter plots for bivariate numerical data, investigate patterns of association, and interpret the data.
[8.SP.1; SMP2, 3, 4, 8]

GETTING STARTED

Use the data below for this page and the next.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Level of Education } & \begin{array}{c}\text { Average Years } \\ \text { of Education } \\ \text { ("input") }\end{array} & \begin{array}{c}\text { Average Annual } \\ \text { Income } \\ \text { in } \$ 1,000 \mathrm{~s}\end{array} & \begin{array}{c}\text { Unemployment } \\ \left.\text { ("output } 1^{\prime \prime}\right)\end{array} \\ \hline \text { < high school diploma } \\ \text { in \% }\end{array}\right)$
(US Bureau of Labor Statistics, 2020)

1. Explain what each ordered pair below means in the contexts given above.

a. (input, output 1) $\rightarrow(12,40.6)$	b. (input, output 2) $\rightarrow(12,9)$
c. (input, output 1) $\rightarrow(16,67.9)$	d. (input, output 2) $\rightarrow(16,5.5)$

2. Record the meanings of numerical data, measurement data, and bivariate data in My Word Bank.
3. Was the data you collected in Stacking Cups numerical data? \qquad Measurement data? \qquad Bivariate data? \qquad
MathLinks: Grade 8 (2 $2^{\text {nd }}$ ed.) ©CMAT

LINEAR ASSOCIATION

Follow your teacher's directions for (1) - (3) (1)

Annual Income vs Years of Education

(2)
(3)
4. Make a scatter plot of the data below.

4eight of Student of the data below. $($ in cm$)$	Score on Math Test $($ as $\mathrm{a} \%)$
150	45
130	30
140	70
120	90
180	40
100	80
150	95
120	55

We say the association is weak or does not exist if the data "clusters in a cloud."

5. Explain what you think the association is between the math test score data and the student height data.
6. Record the meaning of association in My Word Bank.

PRACTICE 1

1. Look at the sets of (x, y) ordered pairs below, all without contexts. Predict the kind of association each has, if any, by observing patterns in the data. Graph points to verify predictions.

2. Examine the pairs of variables below, all without numerical data. Describe the kind of association you might expect.

Variables	Kind of association
a. Number of sodas consumed and number of cavities	
b. Age and quality of eyesight	
c. Number of traffic tickets and cost of car insurance	
d. Shoe size and number of pets at home	
e. Life expectancy and annual income	

3. Write pairs of variables with each kind of association. (Create examples you've not already seen in this unit.)

Positive	Negative	Weak or None

ASSOCIATION AND CAUSATION

Follow your teacher's directions for (1) - (2). (1)
(2)

The statements in problems 3-5 confuse association with causation. For each statement, list other factors that might be a cause for the association. Then discuss with others.
3. People who walk faster tend to live longer. Therefore, if you want to live longer, walk faster.
4. As sales of ice cream increase, the rate of drowning deaths increases. Therefore, ice cream causes people to drown.
5. The more cell phones a country has as a percentage of population, the longer the life expectancy of people in that country. Therefore, cell phones cause you to live longer.
6. Explain what the phrase "association does not imply causation" means in your own words.

PRACTICE 2

Obesity Rates vs Exercise Rates by State
Center for Disease Control and Prevention (CDC), 2018

2. How many data points do you think are on the scatter plot? Does the data appear to cluster anywhere?

3. Explain what each data point below means in context.

PRACTICE 2

Continued
4. Explain what stands out regarding the data points for the two states above.
5. What appears to be the relationship between exercise and obesity? Include the type of association you observe, if any.
6. What might be some reasons for high rates of obesity in the United States?

LINES OF BEST FIT

We will construct linear models for measurement and other numerical data clustered around a straight line. We will draw lines of best fit, estimate their equations, interpret slope and y-intercept in context, and use the equations as models to make predictions. We will explore the effects of potential outliers on data. We will observe associations that are not linear.
[8.SP.1, 8.SP.2, 8.SP.3, 8.F.4, 8.F.5, SMP1, 2, 3, 4, 5, 6, 7]

GETTING STARTED

1. Write the (x, y) coordinates for each point

B

$C(\square, \quad)$
2. Use a straightedge to draw lines $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{C B}$. Extend lines to cross the x-axis and y-axis when possible.
3. Fill in the missing information for each line

EDUCATION DATA REVISITED

Follow your teacher's directions using data and graphs from the previous lesson.

ANALYZING EDUCATION DATA

1. Compare your linear model with up to three classmates. Then answer the following.
a. Is your line of best fit in the exact same place as theirs on the graph?
b. Are your values for the slope and y-intercept exactly the same?
c. Is it possible that there could be more than one line of best fit that is accurate enough? Explain.
2. Explain what the slope represents in the context of this problem for the graph on the left.

According to your model, how much is a year of school worth in terms of a year's income?
3. Explain what the slope represents in the context of this problem for the graph on the right.

According to your model, how much does a year of school affect employment?

ANALYZING EDUCATION DATA
 Continued

4. Is it reasonable to use the y-intercept to make predictions about the income of a person with zero years of education? Explain.

5. Madison graduates from high school at age 18, and plans to work for 50 years, earning an average of $\$ 40,600$ per year. Piper graduates from college at age 22 , and plans to work for 46 years, earning an average of $\$ 67,900$ per year. Compare their lifetime expected earnings. What are some other factors you might want to consider in this analysis?

6. Record the meaning of line of best fit in My Word Bank.

PRACTICE 3

The table shows bivariate measurement data of a plant's growth.

Time (in weeks)	1	2	4	6	7	8	10
Height (in cm)	3	7	10	19	21	25	29

1. Label and scale the grid.

Then graph the data from the table.
2. Explain what you think the association is between the variables and what it means.
3. Draw an estimate for a line of best fit. Then write the following.
a. An estimate for the slope of the line.
b. An estimate for the y-intercept
c. The equation of this line in stope-intercept form.
4. Explain what each represents in the context of the problem.
a. The slope

b. The y-intercept
5. Use your equation to predict...

6. What are some issues that could arise by using a line of best fit to predict the height of the plant after large amounts of time passing, like 100 weeks?

PRACTICE 4

1. Go back to Stacking Cups and revisit the equation you wrote in problem 7. Explain why you think this is a line of best fit, or improve your estimate.

Maxine measured and recorded the height of a bowl. Then she placed a second bowl inside the first, measured and recorded the new height, and continued this process a few more times.

Number of Bowls (x)	1	2	3	4	5	6
Height in $\mathbf{c m}(y)$	4.2	6.3	8.2	10.3		

2. Write reasonable heights for 5 and 6 bowls in the table. Label and scale the graph. Graph the six points.
3. Explain what you think the association is between the variables and what it means.
4. Estimate a line of best fit (draw it) and write its equation.
5. Explain what each represents in the context of the problem.

6. Use your equation to predict...

a. the height of 20 bowls.	b. number of bowls it takes to reach 100 cm.

OBESITY RATES BY STATE

The graph at the bottom of the page is from Practice 2. Use it to answer the following questions.

1. Estimate (draw) a line of best fit on the graph below and write its equation. Since the y-intercept is above the graph, you may want to use a ruler.
2. Explain what the slope and y-intercept represent in the context of the problem.
3. Does the scatterplot represent a function?

The line of best fit? \qquad
5. The CDC recommends to governors of all states to set a goal of 20% for their obesity rates. What does your model predict that the exercise rate should be to meet this goal?

Obesity Rates vs Exercise Rates by State

Center for Disease Control and Prevention (CDC), 2018

\% of adult residents who exercise regularly

OUTLIERS

1. You may have learned about outliers in a previous grade. Record the meaning of outlier in My Word Bank.

The graph to the right shows data for 18 high school math students in one class
2. What does the data point $(80,82)$ mean in the context of this problem?

Grades on the Final Exam versus the Midterm

3. Circle the data point that appears to be a potential outlier. If you removed this data, what happens to the apparent strength of the association?
4. Draw a line of best fit on the graph that excludes the potential outlier and write its equation.

Potential outliers can also trick us into seeing patterns that are not really there.
5. Do you think the data graphed on the right shows a strong association?
6. Graph the points $(45,45)$ and $(35,40)$. Explain whether these new points appear to be potential
they might have on the appearance of an association.

to be potential outliers, and what effect, if any,
7. Make up a title for the graph above and label the axes in a way that the data might fit your context.

NONLINEAR ASSOCIATIONS

On this page and the next are two examples of bivariate measurement data that are not linear.
The graph below shows the height of a bouncing ball measured at the top of each bounce.

1. Explain what the data point $(2,64)$ means in the context of the problem.
2. Explain what the data says. Include why there is an association, but it is not linear.

Height of a Bouncing Super Ball

3. Do there appear to be any outliers in the data?

NONLINEAR ASSOCIATIONS

Continued
The graph below shows the height of a basketball measured over a period of time after it is thrown in the air.
4. Explain what the data points $(0,10)$ and $(9,10)$ mean in the context of the problem.
5. Explain what the data says. Include why there is an association, but it is not linear.

6. Do there appear to be any outliers in the data?

7. Choose a graph. Explain why you think it is realistic (or not).

CATEGORICAL DATA

We will use two-way tables to display the frequencies and relative frequencies of categorical data. We will examine patterns of association in bivariate categorical data, and draw conclusions about possible associations.
[8.SP.4; SMP2, 3, 4, 7]

GETTING STARTED

1. Record the meaning of frequency table and relative frequency table in My Word Bank. Below is the start of two tables created in Ms. Costello's $8^{\text {th }}$ grade math class. Recall that n is used to represent the total number in a population.
2. Complete Table I below.
a. How did you determine the number of students in the class?
b. Explain why the percent total in Table I is 100% (or very close to it).
3. Complete Table II below.
a. Can a student have more than one type of pet?
b. The sum of the $2^{\text {nd }}$ column is ___ How does this value compare to n ?
c. Explain why the percent total (the sum of the $3^{\text {rd }}$ column) in Table II is not 100% ?

Table I How many dogs do you own?			Table II What pets do you own?		
Number of Dogs	Number of students $n=$	Percent of students	Animal	Number of students $n=$ \qquad	Percent of students
	20		Cats	6	
	8		Birds		10\%
2	2		Dogs	10	
3 or more	0		Other	1	
Total			None		50\%

WHAT IS CATEGORICAL DATA?

Follow your teacher's directions for (1).

(1)
 Data type Categorical data
 Numerical data

Complete each table by writing appropriate survey question(s) and possible responses.

2.	MUSIC PREFERENCES	
Data type	A survey question	
Categorical data		

3.	INVOLVEMENT IN THE PERFORMING ARTS		
Data type	A survey question	Possible responses	
Numerical data			

4.	STREAMING VIDEOS		
Data type	A survey question	Possible responses	
Categorical data			

Make up your own topic.

5.		
Data type	A survey question	Possible responses
Categorical Data		
Numerical data		

6. Record the meaning of categorical data in My Word Bank.

TWO-WAY TABLES

Follow your teacher's directions for (1) - (3). Round to the nearest percent.
(1)

Table I
(2)
(3)

$(n=\longrightarrow \quad)$

State which table has the best information for the question. If a calculator computation is required, write the expression along with the answer.

4. How many are male?	5. What percent are male?	6. How many lived?
7. What percent lived?	8. Out of all the males, what percent lived?	9. Estimate the ratio of males to females who died?

10. What conclusions can you draw from the data. Use the data to explain whether it was better to be male or female.

11. Record the meaning of two-way table in My Word Bank.

PRACTICE 5

Ten $8^{\text {th }}$ graders were asked the following questions:

- Do you have a curfew?
- Do you have chores at home?

Data was collected on their responses and recorded.

	Students (A through J)								
	A	B	C	D	E	F	G	H	J
Curfew	Yes	No	No	Yes	Yes	No	Yes	No No	Yes
Chores	Yes	No	Yes	Yes	No	No	Yes	Kes No	Yes

1. Use the data above. Complete the tables below.

Table I: Curfews and Chores Frequency Table

Students with Chores

Students with No Chores

TOTAL			

Table II: Curfews and Chores Relative Frequency Table

$(n=$	Students with Curfew	Students with No Curfew	Total
Students with Chores			
Students with No Chores			
TOTAL			
In your tables:			

2. Draw a circle around the total number of students.
3. Draw a triangle around the total number of students with chores.
4. Draw a square around the percent of students with no curfew.
5. Draw a trapezoid around the percent of students who had chores and a curfew.

PRACTICE 5

Continued
Complete the following using the bivariate categorical data on the previous page. Write which table has the best information for the question. If a computation is required, write the expression along with the answer.
6. How many students had neither chores nor curfew?

10. What percent of students who had no curfew also had no chores?

12. Vinnie says that according to Table II, only 10% of the students have no chores. What is mistaken with Vinnie's reasoning?
13. Raji thinks that students who don't have chores are more likely not to have a curfew either. Does the data support Raji's claim? Explain.

14. Do you think there might be some associations in this data? Explain.

A MARKETING DECISION

You are part of a marketing team that is planning a cell phone advertising campaign in movie theaters. You collect data to determine whether to pitch your campaign to a younger audience or an older one. You asked the following questions of 1,000 movie-goers, and recorded the data in a Venn Diagram (to the right).

- Will you buy a new phone within the next year?
- Are you older than 25 ?

1. Use data from the Venn Diagram to complete the two-way frequency table.
2. Write at least four statements that might help you determine whether to pitch to a younger audience or an older one. Clearly show how you used the data. Use frequencies and relative frequencies to formulate your statements.
3. Use your statements and data to explain whether you think the cell phone company should advertise in movie theaters targeting a younger audience or an older audience.

REVIEW

POSTER PROBLEMS: BIVARIATE DATA

Part 1: Your teacher will divide you into groups.

- Identify members of your group as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D .
- Each group will start at a numbered poster. Our group start poster is - Each group will have a different colored marker. Our group marker is

Part 2: Do the problems on the posters by following your teacher's directions.

Poster 1 (or 5)	Poster 2 (or 6)	Poster 3 (or 7)	Poster 4 (or 8)
$(1,6)(2,6)(3,6)$	$(1,55)(2,60)(3,40)$	$(1,70)(2,60)(3,80)$	$(2,0)(3,30)(4,27)$
$(4,12)(5,9)(6,6)$	$(4,40)(5,40)(6,25)$	$(4,70)(5,100)(6,80)$	$(4,30)(5,30)(5,33)$
$(7,18)(8,12)$	$(7,25)(8,15)$	$(7,100)(8,100)$	$(8,12)(8,9)$
$(9,21)(10,24)$	$(9,5)(10,20)$	$(9,90)(10,120)$	$(9,9)(9,12)$
$(11,18)(12,18)$	$(11,10)(12,0)$	$(11,90)(12,120)$	$(10,9)(12,36)$
A. Number the axes and graph the ordered pairs.			
B. Draw a line of best fit and estimate an equation in slope-intercept form (if possible).			
C. Explain the association in words.			
D. Come up with a reasonable context, and write an appropriate title and axes labels.			

Part 3: Return to your seats. Work with your group, and show all work.
Go back to your start problem.

1. Write a few comments critiquing the answers on the poster.
2. Offer an alternative context for the data.

MATCH AND COMPARE SORT: BIVARIATE DATA

Your teacher will give you some cards. Cut them out.

1. Individually, match words with descriptions. Record results.

Card set \triangle			Card set \bigcirc		
Card number	word	Card letter	Card number	word	Card letter
I			I		
II			II		
III			III		
IV			IV		

2. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

3. Partners, choose another pair of numbered matched cards and discuss the attributes that are the same and those that are different.

FIGHTING \$TEREOTYPES

Jose hears frequently that athletes don't perform well academically, but he believes that all students can be successful in school. He is disturbed by the hurtful stereotypes of certain populations.

Jose collected some data at the local high school to try to find an association between participation in school sports and being on the honor roll. Students were asked at random:

- Did you play a sport last semester?
- Did you make honor roll last semester?

1. Each member of your group will get one or more cards with information on it. You may NOT show cards to anyone, but you may read yours aloud as many times as needed. Together, fill in all of the missing information in the Venn diagram at the right. Then complete the two-way tables below

Table I: Academics and Athletics (frequencies)

	sport	no sport	Total
honor roll			
no honor roll			
Total			

_)	sport	no sport	Total
no honor roll			
Total			

2. What associations, if any, do you see in the data? What conjecture might you make about how well athletes do academically at this school? Clearly show how you used the data. Use frequencies and relative frequencies to formulate your statements.

3. Are there other stereotypes you hear about that you think ought to be questioned?

FOCUS ON VOCABULARY

Across

1 data whose responses are numbers

5 questionnaire used to collect data

line that approximates a linear relationship (2 words)

8 unusually large or small value in a data set

10 relationship among variables (it does not imply causation)

12 a sorting circle diagram

2 data sorted by attributes

3 table that lists counts from a population

Down

6 type of frequency table that displays percents
9 analyzed with statistics or displays

11 number of variables in univariate data

SPIRAL REVIEW

1. Alge-Grid: What's the a? Each clue gives the value of a corresponding cell. Use clues to find a, which has the same value in all cells. Once evaluated, the cells will contain the whole numbers $1-9$, exactly once each.

The Alge-Grid

$a+3$	$[9(a-1)]^{\frac{1}{3}}$	$\sqrt{a}-1$
$a \times a^{0}$	$(a-1)^{2}$	$a^{2}-2 a-2$
$\frac{1}{2} a$	$(a-2)^{3}$	$a+1$

2. Solve each equation. Check by substitution in to the original equation.

a. $\quad-4(g-8)=28$		

SPIRAL REVIEW

Continued

Find the indicated measurements.
3. A cylinder has a volume of $706.5 \mathrm{ft}^{3}$ and radius of 5 ft . Find the height. Use $\pi=3.14$.

5. A cone has dimensions shown. Findits
volume. Use $\pi=3.14$

4. A cylinder has a diameter of 11 cm and height 9 cm . Find its volume. Leave in terms of π.

6. A sphere has a radius of 4 cm . Find its volume. Use $\pi=3.14$.

9. The sun is expected to die out in about 8 billion years. The average human life expectancy is 80 years. How many lifetimes will the sun exist? Use scientific notation.
10. A cough expels about 20,000 germs per droplet. Each cough carries about 3,000 droplets. How many germs are expelled in a single cough? Use scientific notation.

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Mónitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before.
3. Mathematical Practice. Describe a situation where paying attention to reasoning of others in class played an important part of understanding the data presented to you [SMP3]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.
4. Making Connections. Describe a situation where a story was communicated with data that is of interest to you now or in the future.

STUDENT RESOURCES

Word or Phrase

association	In statistics, an association betwe so that the variables are statistica relationship is linear, we refer to a
bivariate data	Bivariate data is data that has two ordered pairs.
A list of country of origin bivariate data set with one	

Definition

veen two variables is a relationship between the variables, cally dependent. In the case of numerical variables, if the a linear association between the variables. vo variables. Bivariate data can be represented by and batting average for each baseball player is a ne categorical variable and one numerical variable. that has two numerical variables. Bivariate numerical catter plot, so that the relationship (if any) between the variables is more easily seen.

A list of heights and we numerical data set.

categorical data	Categorical data is data sorted into categories, such as colors, ranges of measurements, or other attributes of the data. Generally, there are only finitely many categories.
data set	A data set is a collection of pieces of information about a population, often numbers, obtained from observation, questioning, or measuring.
frequency table	A frequency table is a table that lists items and the number of times they occur in a data set.

line of best fit	A line of best fit for a scatter piot is a straight line that best represents (in some sense) the data points in the scatter plot. measurement data
Measurement data is numerical data that comes from making measurements.	
neights, temperatures, lengths, areas, and volumes.	

For the data set $\{1,1,1,3,5,6,6,7,23\}$, the data value 23 is a potential outlier.

Word or Phrase	Definition
population	In statistics, the population refers to the source of a data set. If we wish to make statistical inferences about the students at a school, we may take a random sample of the students, or we may gather data from all the students. In either case, the population refers to the students in the school.
relative frequency table	A relative frequency table is a frequency table that lists items and the proportion (or percent) of times they occur.
statistical question	A statistical question is a question where numerical data that has potential for variability can be collected and analyzed for the purpose of answering the question. A statistical question: "How much TV do middle school students watch on average?" NOT a statistical question: "How many hours of TV did you watch last week?"
two-way table	A two-way table is a table that displays bivariate categorical data, in which the rows correspond to the categories of one variable, and the columns correspond to the categories of the other. A way wable that includes the number of data observations is called a "twoway frequency table". A two-way table that includes the percentage of the number of data observations relative to the total number of observations is called a "two-way relative frequency table".
	Jumerical Data
Numerical data is data consisting of numbers. Measurement data is numerical data that comes from making measurements.	
measurements. Exam - How many dogs - How many minu Some ways to repor - Measures of cen - Measures of spr - Data displays su Some ways to report Tables Graphs Equations	estions are used to colleot numerical data. Numerical data typically come from counting or mples of numerical survey questions include: do you own? (a counting question) did you exercise last week? (a measurement question) one-variable (or univariate) numerical data include: er such as mean, median, mode ad such as range, mean absolute deviation (MAD), and 5 -number summary ch as tables, line plots, histograms, and box plots two-variable (or bivariate data) numerical data include:

Lines of Best Fit

A line of best fit for a scatter plot is a straight line that best represents (in some sense) the data points in the scatter plot.

Example: When the data in the table below is graphed in a scatter plot, the data points cluster along a straight line. We conclude that there is likely a linear association between x and y. One possible such line may be estimated by the equation graphed below, $y=\frac{3}{2} x$

1. Using a graphing calculator, another estimated equation is given as $y=1.6 x+$ 0.3 (not graphed).

\boldsymbol{x}	1	2	3	4	5	6	7	8
\boldsymbol{y}	2.2	3.5	5.5	7	8	8.5	11.5	14

Nonlinear Associations

Outliers

An outlier of a data set is a data value that is unusually small or unusually large relative to the overall pattern of values in the data set.

Outliers can create the illusion that an association exists when one does not. They can also distract us from seeing an association when there clearly is one.

Example 1: In the scatter plot to the right, the data point $(6,10)$ is a potential outlier. Its y-coordinate 10 appears to be unusually large compared to the other y-coordinates.

Example 2: In a $6^{\text {th }}$ grade classroom, students were they had. All students but one replied with numbers
sked how many pets of pets that ranged from 0 to 8. That one pet owner said she had 40 fish. This number of fish appears to be an outlier, because it is unusually large compared pets.

Categorical Data

Categorical data is data sorted into categories, such as colors, ranges of measurements, or other attributes of the data. Generally, there are only finitely many catec

Categorical survey questions are used to collect categorical data. Responses to these questions are usually in words. Examples of categorical survey questions include:

- What types of pets do you own? (Answers include dog, cat, bird, no pets, etc.)
- Do you have a curfew? (A yes-no answer)

Some ways to report one-variable categorical data in

- Frequency tables
- Relative frequency tables
- Pie charts (circle graphs)

Bar graphs
Some ways to report two-variable categorical data include:

- Two-way frequency tables
- Two-way relative frequency tables

COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT		
8.F.B	Use functions to model relationships be	tween quantities.
8.F. 4	Construct a function to model a linear relat change and initial value of the function fror including reading these from a table or fror linear function in terms of the situation it m	onship between two qua a description of a relat a graph. Interpret the r odels, and in terms of its
8.F. 5	Describe qualitatively the functional relatio where the function is increasing or decreas qualitative features of a function that has b	ship between two qua ing, linear or nonlinear) een described verbally
8.SP.A	Investigate patterns of association in	variate data.
8.SP. 1	Construct and interpret scatter plots for biv association between two quantities. Descri negative association, linear association, an	ariate measurement data be patterns such as clus d nonlinear association.
8.SP. 2	Know that straight lines are widely used to For scatter plots that suggest a linear asso the model fit by judging the closeness of th	model relationships betw ciation, informally fita s e data points to the line
8.SP. 3	Use the equation of a linear model to solve interpreting the slope and intercept. For ex a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an ac additional 1.5 cm in mature plant height.	problems in the context ample, in a linear model ditional hour of sunlight
8.SP. 4		n also be seen in bivaria wo-way table. Construct bles collected from the sa
	frequencies calculated for rows or columns variables. For example, collect data from stas on school nights and whether or not they hat who have a curfew also tend to have chores	to describe possible as tudents in your class on have assigned chores at s?
STANDARDS FOR MATHEMATICAL PRACTICE		
SMP1 Make sense of problems and persevere in solving them. SMP2 Reason abstractly and quantitatively. SMP3 Construct viable arguments and critique the reasoning of others. SMP4 Model with mathematics. SMP5 Use appropriate tools strategically. SMP6 Attend to precision. SMP7 Look for and make use of structure. SMP8 Look for and express regularity in repeated reasoning.		

MathLinks: Grade 8 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 6: Student Packet

