\qquad
\qquad

Parent (or Guardian) signature \qquad
MathLinks: Grade 8 (2 ${ }^{\text {nd }}$ ed.) ©CMAT
Unit 5: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.

THE ROPE INVESTIGATION

Follow your teacher's directions to explore layers, cuts, and pieces in this rope problem. Use extra paper if needed.

SLOPE OF A LINE

We will explore the meaning of positive and negative slopes of lines. We will count to find slopes of lines on a grid. We will use the slope formula to find slopes of lines in the coordinate plane. We will recognize that line segments having the same slope are either on the same lines or on parallel lines.
[8.EE.6, 8.F.4; SMP3, 6, 8]

GETTING STARTED

a. Why does $\frac{c}{d}=\frac{-c}{-d}$?
3. Circle the expressions that are equivalent to $\frac{(3)-(-1)}{2-5}: \frac{(3)-(-1)}{5-2}$

$$
\frac{(-1)-(3)}{2-5}
$$

$$
\frac{(-1)-(3)}{5-2}
$$

4. Using the grid to the right, start with the given point, then follow directions to plot the next one.
a. Start at point A. Count 4 units down and 1 unit to the right. Plot point N. Draw $\overline{A N}$.
b. Start at point O. Count 3 units up and 2 units to the right. Plot point F. Draw $\overline{O F}$.
c. Start at point I. Count 1 unit down and
 7 units to the left. Plot point T. Draw $\overline{I T}$.
d. Start at point U. Count 2 units up and 4 units to the left. Plot point P. Draw $\overline{U P}$.
5. Which looks steeper?
a. Line B or line C ?
b. Line Cor line D ?

THE MEANING OF SLOPE

Follow your teacher's directions for (1) - (9).

\qquad .
\qquad
Like reading words on a page,
\qquad
(2) Slope of a line is a \qquad of Using two points on a line, we first count of a line.

we read a graph from
 .

First circle whether a line segment has a positive or negative slope (+ or -), Then find the slope by counting.

10. What do you notice about the slope values for each boxed set of problems above?
11. Which value is greater, the slope of $\overline{N K}$ or the slope of $\overline{P M}$?

Which line segment is steeper $\overline{N K}$ or $\overline{P M}$?
12. How are the slope values in problems $6-7$ related to the slope values in problems $8-9$?
13. Which value is greater, the slope of $\overline{P M}$ or the slope of $\overline{R Q}$?

Which line is steeper $\overline{P M}$ or $\overline{R Q}$?

PRACTICE 1

Before counting, determine whether each slope is positive $(+)$ or negative $(-)$ and circle the appropriate symbol. Then find the slope of each line segment by counting.

1. Slope of $\overline{A B}: \quad+\quad-$
2. Slope of $\overline{C D}:+\quad-$
3. Slope of $\overline{E C}$
4. Slope of $\overline{F G}$

5. Slope of $\overline{W T}$
6. Slope of $\overline{X Z}$

Slope of $\overline{H J}$:
9. Suppose a line has a positive slope. When finding the slope between two points on this line, one way is to count up and then \qquad Another is down and then \qquad .
Suppose a line has a negative slope. When finding the slope between two points on this line, one way is to count down and then \qquad . Another is up and then \qquad .
10. What do you notice about the slopes of line segments lying on the same line?
11. Which line segments from above must have the same slope as $\overline{X Y}$? Explain.
12. Name two different lines above that are parallel and explain how you know. Then record the meaning of parallel in My Word Bank.
13. Stacy was looking at two line segments above and said, "The slope of $\overline{F G}$ is greater than the slope of $\overline{D E}$ because $\overline{F G}$ is longer than $\overline{D E}$. Critique her reasoning.

PRACTICE 2

1. For each point, count vertical and horizontal distances to create a line segment with the given slope.

- From points A to $G: \frac{3}{4}$
- From points B to $H: \frac{6}{8}$
- From points C to J: $\frac{-3}{-4}$

What do you notice about the line segments above?
2. For each point, count vertical and horizontal distances to create a line segment with the given slope.

- From points D to $K: \frac{6}{-3}$
- From points E to $L:-2$
- From points F to $M: \frac{-4}{2}$

What do you notice about the line segments above?

3. Start at point U, and count vertical and horizontal distances to create four segments with the given slopes.

- From points U to
- From points V to $W: \frac{-2}{-6}$

From points W to $Z: \frac{-4}{2}$

- From points Z to $U: \frac{2}{6}$

What do you notice about the figure above?

THE SLOPE FORMULA

Follow your teacher's directions for (1) - (6).
(1)

(6)
7. Doug said, "I prefer counting to using the formula when I find the slope of a line." Do you agree with Doug?
8. A line contains the points $(500,100)$ and $(225,75)$. Find the slope of this line.
9. Record the meaning of slope of a line in My Word Bank.

PRACTICE 3

Before calculating, determine whether each slope is positive or negative and circle +or-. Then use the slope formula to calculate the slope of each line segment. Check by counting.

7. Find the slope of the line passing through points A and B below. Think about whether you will choose to graph the points and find the slope by counting, or use the slope formula.

8. In your own words, explain how you can use any two ordered pairs on a line to calculate the slope of the line.

PRACTICE 4

For Sets 1 and 2 below, draw lines with the given points and slopes. Extend the lines so that they go through the majority of the grid.

SLOPE-INTERCEPT FORM

We will find equations of lines in slope-intercept form.
[8.EE.6, 8.F.2, 8.F.3, 8.F.4; SMP1, 4, 7]

GETTING STARTED

1. For the line graphed to the right, the y-intercept is \qquad (a single number), and it is located on the y-axis with coordinates
\qquad). The slope of this line is equal to \qquad .

(__). \qquad
F.3, 8.F.4; SMP1, 4, []

2. Record the meaning of y-intercept and point of intersection in My Word Bank.

For each function rule below, complete the table, graph the line, and identify the slope and y-intercept.

5.	$y=2 x-3$	
x	y	
0		
1		
2		
-1		
slope:		
y-intercept:		

6. Explain how to find the y-intercept of a line from looking at each of the following:
a. a graph
b. a table
c. an equation

FINDING EQUATIONS OF LINES

Follow your teacher's directions for (1) - (9).
Let $x=$ number of months elapsed and $y=$ tolal dollars saved.
(1) Zara has \$ \qquad in the bank and saves \$ \qquad per month. Equation: \qquad
(2) Emmett has \$ \qquad in the bank and saves \$ \qquad per month. Equation: \qquad
(3) Aisha has \$ \qquad in the bank and saves \$ \qquad per month.
(4) Drewhas \$ \qquad in the bank and spends \qquad per month.

Equation:

(5) Anita has $\$$ \qquad in the bank and saves per month.
(6) A linear function in slope-intercept form The slope is \qquad The y-intercept is Another point on the line is (\qquad
(7) A linear function in slope-intercept form The slope is \qquad The y-intercept is \qquad at the point (, \qquad).
(8) A linear function in slope-intercept form is \qquad .

The slope is \qquad . The y-intercept is \qquad at the point (\qquad , \qquad
Another point on the line is \qquad , \qquad).
(9) The slope-intercept form of a line is \qquad .

The slope is \qquad . The y-intercept is \qquad at the point (\qquad , \qquad _).

Any point on the line is \qquad , \qquad).
10. Record the meanings of linear function of slope-intercept form in My Word Bank.

ANALYZING EQUATIONS OF LINES

Complete the table below for the lines in the graph above.

Complete the table below for the lines in the graph above.
Line Slope (m) y-intercept (b) Ordered pair of y-intercept EquationAnother point on the line
1.
$\overline{E D}$
2.
$\overline{B C}$

6. Which lines are parallel? Explain.

PRACTICE 5

For each function, complete the table, graph the line, and identify the slope and y-intercept.

1.	$y=4 x$	
x	y	
0		
1		
2		
-1		

m :
b:

2.	$y=4 x+4$	
x	y	
0		
1		
2		
-1		
$m:$		
$b:$		

3.	$y=4 x-3$	
x	y	
0		
1		
2		
-1		
$m:$		
$b:$		

Compare the three equations and graphs in Getting Started to the ones on this page.
4. How are the three equations above similar to the three in Getting Started?
5. How are the three graphs above similar to the three in Getting Started?

For the linear functions below, without making tables or graphs, complete each sentence.
6. For $y=5 x+2$, the slope of this line is \qquad and the y-intercept is \qquad -.
7. For $y=x-4$, the slope of this line is \qquad and the y-intercept is \qquad .
8. For $y=3 x$, the slope of this line is \qquad and the y-intercept is \qquad .
9. What can you say about two different lines with the same slope?
10. What can you say about two different line-segments with the same slope?

PRACTICE 6

Fill in the table below. Use the coordinate plane at the bottom of the page.

Write equations as described below. Do not graph.
5. Write the equation of a line that is parallel to $y=3 x+2$ that goes through the point $(0,-7)$.

Write the equation of a line that is parallel to $y=-5 x+8$ that goes through the origin.
7. Write the equation of a line that intersects $y=-5 x+8$ at the point $(0,8)$.

APPLICATIONS AND EXTENSIONS

We will revisit The Rope Investigation and A Rectangle Paradox (from Unit 2). We will connect representations (tables, graphs, equations) as we solve problems involving slope, intercept, and the slope-intercept form of a line. We will extend the meaning of slope to explore horizontal and vertical lines and derive an equation of a line using algebra.
[8.EE.6, 8.F.2, 8.F.3, 8.F.4, 8.F.5; SMP1, 2, 3, 4, 6, 7, 8]

GETTING STARTED

Solve each equation for y. In other words, write it as $y=$ \qquad .

| 1. $10=\frac{y}{7}$ | 2. $10=\frac{y}{x}$ |
| :--- | :--- | :--- |

Let $x=$ number of minutes and $y=$ degrees Fahrenheit.
5. In a lab, a liquid is brought to a starting temperature of $200^{\circ} \mathrm{F}$. From there, it cools at a rate of 2 degrees per minute. Write the following:
initial valtu:
rate of change:
equation.
temperature after 20 minutes:
6. In the lab, another liquid is brought to a starting temperature of $50^{\circ} \mathrm{F}$. From there, it is heated by 5 degrees per 30 seconds. Write the following:
initial value:
rate of change:
equation:
temperature after 20 minutes:
7. State the slope formula in your own words.
8. Use the slope formula to find the slope of a line between $(-5,2)$ and $(3,2)$.
(You will learn more about this strange result later in this lesson!)

THE ROPE REVISITED

Follow your teacher's directions

(1)	
\# of tayers (L) cuts (C)	\# of pieces (P)

(2)
(3)

PRACTICE 7

Graph the two pairs of lines as described below.

1. From point P, count 5 units up for every to the right, making 2 more points. Connect the points with a line (line P),

From point Q, count 7 units up for every 3 to the right, making 2 more points. Connect these points with a line (line Q). $\begin{array}{ll}\text { slopes } & P: \quad Q: \\ \text { y-intercepts } & P: \\ \text { equations } & P: \\ & Q:\end{array}$

Are these functions increasing or decreasing?

2. From point M, count 2 units down for every 3 to the right, making 2 more points. Connect the points with a line (line M).

From point N, count 3 Units down for every 5 to the right, making 2 more points. Connect these points with a line (line N). slopes y-intercepts \qquad N :
 equations

Are these functions increasing or decreasing?

Why are these lines NOT parallel?

Which line is steeper?

RECTANGLE PARADOX: A FRESH LOOK

Do you remember this problem from Unit 2? Rectangle I is cut apart and rearranged to form Rectangle II. If you find the area of these rectangles, you'll notice they are different. How can that possibly happen?

Verify the rectangle areas.

As you can see, the areas are very close! If you solved the problem in Unit 2, you proved that Rectangle I actually cannot be rearranged to form Rectangle II. And, in doing so, you probably used the Pythagorean theorem, which is one of the big ideas of that unit.

Your job is to use something you've learned in this unit to prove in a different way that Rectangle I cannot be rearranged to form Rectangle II. In other words, what's wrong with Rectangle II?

Rectangle I

PRACTICE 8

Each table's values below represent a linear function. Fill in the missing values, list the y-intercepts (b), find the slopes of each line (m), circle whether each is an increasing (\uparrow) or decreasing (\downarrow) function, and write the equations in slope-intercept form.

x	y
0	
1	6
2	22
3	38
4	
$b=$	$m=$

\uparrow or \downarrow equation:
5. Which of the four tables represents the graph of a line that is
a. the steepest?

Explain.
3.

0		0		
1	6		1	18
2	22		2	14
3	38		3	10
4		$4=$		
$b=$				

Challenge: find the x-intercept of the line represented in problem 1. Show work.

PRACTICE 8

Continued
7. State why the graphs of A, B, and C below represent linear functions.
8. Fill in the table.

| | | Line A |
| :--- | :--- | :--- | :--- |
| a. | y-intercept | |
| b. | slope | |
| c. | increasing or
 decreasing | |
| d. | equation in
 slope-intercept
 form | |

Line B	Line C

9. A line goes through the origin and the point $(-15,-20)$. Without graphing, write the equation of this line in slope-intercept form.
10. A line goes through the origin and the points $(0,9)$ and $(6,-21)$. Without graphing, write the equation of this line in slope-intercept form.

11. Circle all the equations below that represent proportional relationships and explain how you know.

$$
y=-5 x+1 \quad y=-\frac{5}{8} x \quad y=22 x+17 \quad y=39 x
$$

HORIZONTAL AND VERTICAL LINES

Use the grid below and fill in the table. First circle H if the line is horizontal or V if it is vertical. Then complete the columns.

8. What is the slope of a vertical line?
9. Is it possible to write the equation of a vertical line in slope-intercept form?

DERIVING EQUATIONS OF LINES

4. Line k goes through the points $(0, b)$ and (x, y).
a. Its y-intercept is \qquad
b. Does this line represent a proportional relationship?
c. Use the two points given on line k to find its slope (m).

Then solve this slope equation for y.

$$
m=\frac{y-\square}{x-\square}
$$

5. The results of problems 3 and 4 illustrate that:

- for any line with slope m and y-intercept 0 , its equation is \qquad ; and
- for any line with slope m and y-intercept b, its equation is \qquad .

PRACTICE 9: EXTEND YOUR THINKING

Problems 1-4 refer to lines P, Q, R, and S.
Use the slope formula to find the slope of lines between the two given points. Then write the equations of the lines in slope-intercept form.

	Line	Stope	Equation
1.	P		
2.	Q		
3.	R		
4.	S		

5. Record the meaning of x-intercept in My Word Bank.

6. For each line, label the coordinates where the lines cross the x-axis or y-axis.

Name the x-intercept or y-intercept for each line. Then write an equation for each line.

	Line	x-intercept	y-intercept	Equation
7.	T			
8.	U			
9.	V			
10.	W			

REVIEW

MATCHING ACTIVITY: LINEAR FUNCTION REPRESENTATIONS

1. Your teacher will give you some cards. Match the equations, tables, and graphs. 2. Fill in the missing information.

A. Equation: $y=2 x+4 \frac{1}{2}$ Table match: Graph match: Slope: y-intercept:	B. Equation: $y=2 x$ Table match: Graph match: Slope: y-intercept:	C. Equation: $y=-2 x+4$ Table match: Graph match: Slope: y-intercept:
D. Equation: $y=\frac{1}{2} x$	$\text { E. Equation: } y=\frac{1}{2}$	F. Equation: $y=-\frac{1}{2} x$
Table match:	Table match:	Table match:
Graph match:	raph match:	Graph match:
Slope:	Slope:	
y-intercept:	y-intercept:	y-intercept:

3. Circle all the equations below whose graphs are lines parallel to $y=-5 x+4$.
$y=-5 x+1 \quad 5 x+y=-1$
$y=5 x+4$
$y=5 x$
$y=-5 x$
4. Circle all the equations below whose graphs have the same y-intercept as $y=-5 x+4$.

$$
y=-2 x+4 \quad x+y=-4 \quad y=5 x+4 \quad y=x-(-4) \quad y=-5 x
$$

5. Write the equation of a line that...
a. is parallel to the graph of $y=2 x+7$ and goes through $(0,-3)$.
b. is parallel to the graph of $y=-\frac{2}{3} x-4$ and goes through $(0,5)$.
6. Picture a (non-vertical) line that goes through the origin. What is its y-intercept?

POSTER PROBLEMS: LINEAR FUNCTIONS

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D.
- Each group will start at a numbered poster. Our group start poster is \qquad .
- Each group will have a different colored marker. Our group marker is \qquad .

Part 2: Do the problems on the posters by following your teacher's directions.

Poster $\mathbf{1}$ (or 5)	Poster 2 (or $\mathbf{6}$)
$y=3 x+1$	$y=3 x-1$

A. Copy the equation. Make a table. For the two positive numbers.
B. Graph the line. Scale the x-axis and y-axis as needed. State whether this linear function represents a proportional relationship and how you know.
C. By looking at the equation, the table, anc Then write one equation with the same s equation with a different slope and the s
D. Double check the slope by choosing two points on the line and calculating it using the slope formula. Show all work.

Part 3: Return to your seats. Work with your group.

Use your "start problem." Be prepared to share answers with the class.

1. Write an equation that:
a. has the same y-intercept as your line, and twice the slope.
has the same y-intercept as your line, and the slope is the reciprocal of your "start" line.
2. Which line has the greatest slope? Which line is the steepest?

OPEN MIDDLE PROBLEMS: LINEAR FUNCTIONS

1. Using the digits $0-9$, no more than once each, create a table of values such that the points graphed are all along the same line.
For your line, write the:
slope: \qquad
y-intercept: \qquad equation: \qquad

There is a line that goes through the origin and point (a, b). Find values for a and b to satisfy each condition for problems $2-3$. Use only the digits $1-9$, no more than once each for each problem.
2. The greatest positive slope possible.

The equation for this line is:
3. The least positive slope possible.

The equation for this line is:
4. There is a line that goes through points (c, d) and (e, f). Use the digits $1-9$ no more than once each to find four coordinates to create the slope of a line as close to zero as possible.

VOCABULARY REVIEW

Across

2 Where lines cross is a point of \qquad .

Down

1 The value of y that corresponds to $x=0$ in an equation (hyphenated word)

6 The slope of the line $y=9 x+15$ (in words)

The value of x that corresponds to $y=0$ in an equation (hyphenated word)

3 Representation of entries of input and output values

4 Symbolic representation such as $y=-4 x+7$

5 The y-intercept of the line $y=9 x+15$ (in words)

11 Lines that never meet
8 A measure of the steepness of a line

9 Visual representation that displays coordinates

SPIRAL REVIEW

1. READY-X. Solve for the values of R, E, A, D, Y, X. Sums of rows and columns are indicated at the end of each row and column.

COLUMNS
Rows
2. Solve each equation.

a. $12=9-3 x+6 x$	b.	$0.5-(3.2 n-3.1)+5.9 n=11.7$
c.	$5(m+8)=28$	d.

SPIRAL REVIEW

Continued

SPIRAL REVIEW

Continued

5. Determine whether each number is rational or irrational.

Number	$\sqrt{11}$	$-4 \frac{1}{3}$	$\frac{8}{\sqrt{4}}$	$0.121121112 \ldots$	$0.121212 \ldots$
Rational					
Irrational					

6. Olivia and Addie agree that the value of $\sqrt{30}$ is in between 5 and 6. Olivia thinks that $\sqrt{30}$ is closer to 5 . Addie thinks that $\sqrt{30}$ is closer to 6 .
a. Which student do you think is more accurate?
b. What would you say to the other student to help her understand her error?
7. Number the tick marks on the line below. Continue the decimal pattern for each given number. Complete the table. Graph the points.
0.35
0.36

	Given number (continue each pattern)	Write with a repeat bar (if possible)	Does the decimal terminate?	Write as a fraction (if possible)
D	0.3535			
C	0.3555			
K	$0.35000 \ldots \ldots$			

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before.
3. Mathematical Practice. Describe a situation where you manipulated numbers and algebraic symbols, and then connected those back to a real situation or context [SMP2]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

4. Making Connections. How are proportional relationships and linear functions the same? How are they different?

STUDENT RESOURCES

Word or Phrase

Definition

Word or Phrase

Definition

| x-intercept | The x-intercept of a line is the x-coordinate of the |
| :--- | :--- | point at which the line crosses the x-axis. It is the value of x that corresponds to $y=0$.

The x-intercept of the line $y=3 x+6$ is -2 . If $y=0$, then $x=-2$.
y-intercept

The y-intercept of a line is the y point at which the line crosses value of y that corresponds to y-axis. It is the

For the line $y=3 x+4$, the y-intercept is 4 . If $x=0$, then $y=4$.
coordinate of the
the y-axis. It is the
$x=0$.
the y-intercept is 4 .

Slope

One way to think about slope (m) is to imagine that the line is a portion of a mountain. Just as we read from left to right, we will move up and down the mountain from left to right. When moving up the mountain, the slope is positive. When moving down the mountain, the slope is negative. The steeper the mountain, the greater (in absolute value) the slope.

The slope (m) of a line is computed as: $\frac{\text { vertical change }}{\text { horizontal change }}$ as you move difference in y coordinates difference in x coordinates as you move from one point to from one point to another on the same line, another on the same line.

To use counting to determine slope, first move in a vertical direction and find the directed distance, and then move in a horizontal direction and find the directed distance.

If $A(-8,1)$ and $B(-5,6)$ are points on a line, then count 5 units up and then 3 units to the right. $m=\frac{5}{3}$

To use coordinates to determine slope (m), find the quotient of the difference in the y-coordinates and the difference in the x-coordinates.

If $A(-8,1)$ and $B(-5,6)$ are points on a line, then

$$
m=\frac{\text { difference in } y}{\text { difference in } x}=\frac{6-1}{-5-(-8)}=\frac{5}{3} \text {. }
$$

If (a, b) and (c, d) are points on a line, then

$$
m=\frac{\text { difference in } y}{\text { difference in } x}=\frac{d-b}{c-a} \text {. This formula is the definition of the slope of a line. }
$$

Horizontal and Vertical Lines

The slope (m) of a line is computed as:
difference in y coordinates difference in x coordinates
as you move from one point to another on the same line.

Horizontal Lines

A horizontal line is a line parallel to the x-axis. Every point on a horizontal line has the same y-coordinate, and the vertical change between any two positions on the line is zero. Hence, slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{0}{\text { horizontal change }}=0$

The slope of a horizontal line is zero.

Vertical Lines

A vertical line is a line parallel to the y-axis. Every point on a vertical line has the same x-coordinate, and the horizontal change between any two points on the line is zero. Hence,
slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { vertical change }}{0}$
since division by zero is undefined.
The slope of a vertical line is undefined.

The Slope-Intercept Form of Linear Equations

Stope-intercept form of a linear equation is $y=-m x+b$, where $m=$ slope of the line and $b=$ the y-intercept.
Find the equation of a line with a slope of $-\frac{1}{3}$ and the y-intercept is -5 .
Since $y=m x+b$, then $y=-\frac{1}{3} x-5$.
Find the equation of the line that passes through the points $(0,4)$ and $(-2,0)$.

First plot the points on a graph.
Notice that the y-intercept is 4 .
Count or compute to find the slope,
$m=\frac{4-0}{0-(-2)}=2$
Therefore, the equation of the line is $y=2 x+4$.

COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT

8.EE.B	Understand the connections between proportional relationships, lines, and linear equations.
8.EE. 6	Use similar triangles to explain why the slepe m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.
8.F.A	Define, evaluate, and compare functions.
8.F. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F.3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
8.F.B	Use functions to model relationships between quantities.
8.F.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y, values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlineart). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

STANDARDS FOR MATHEMATICAL PRACTICE	
SMP1	Make sense of problems and persevere in solving them.
SMP2	Reason abstractly and quantitatively.
SMP3	Construct viable arguments and critique the reasoning of others.
SMP4	Model with mathematics.
SMP5	Use appropriate tools strategically.
SMP6	Attend to precision.
SMP7	Look for and make use of structure.
SMP8	Look for and express regularity in repeated reasoning.

