$\qquad$ Date $\qquad$


PLANE AND SOLID FIGURES

|  | Monitor Your Progress | Page |
| :---: | :---: | :---: |
| My Word Bank |  | 0 |
| 1.0 Opening Problem: Paper Solids |  | 1 |
| 1.1 Volume of Cylinders <br> - Derive and use the formula for the valume of a cylinder. <br> - Solve cylinder volume problems using algebra. | $\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$ | 2 |
| 1.2 Volume of Cones and Spheres <br> - Derive and use the formulas for the volume of a cone and a sphere. <br> - Solve cone and sphere volume problems using algebra. | $\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$ | 7 |
| 1.3 Lines, Angles, and Triangles <br> - Understand facts about interior and exterior angles of a triangle. <br> - Know the properties of angles formed when two lines are intersected by another line, and use this information to solve problems. | $\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$ | 10 |
| Review |  | 17 |
| Student Resources |  | 24 |

Parent (or Guardian) signature $\qquad$
MathLinks: Grade 8 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 1: Student Packet

## MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.
alternate exterior angles

## PAPER SOLIDS

Follow your teacher's directions for (1) - (4) for each solid.

| (1) | Sketch \#1: | Sketch \#2: | Sketch \#3: |
| :--- | :--- | :--- | :--- |
| (2) |  |  |  |
| (3) |  |  |  |
| (4) |  |  |  |
| Recording space for Practice 2. |  |  |  |


| Sketch \#4: | Sketch \#5: | Sketch \#6: |
| :--- | :--- | :--- |
|  |  |  |

## VOLUME OF CYLINDERS

We will develop the formula for the volume of a cylinder and use it to solve problems.
[8.G.9; SMP1, 2, 3, 4, 5, 6, 7]

## GETTING STARTED

Find the area of each circle with the given radius $(r)$ or diameter $(d)$ measures.

1. $r=6 \mathrm{~mm}$ (Use $\pi=3.14$.)
2. $d=8 \mathrm{~mm}$ (Leave in terms of $\pi$.)


Consider the rectangular prism pictured to the right to complete the following.
3. How many squares are in the rectangular base $(B)$ of this prism (either top or bottom)? $\qquad$
4. How many cubes are in the top (or bottom) horizontal "layer" of this rectangular prism?
5. How many horizontal layers are there? $\qquad$

6. How many cubes are there in all (the total volume)? $\qquad$
7. Write the length, width, and height of this prism: $\ell=$ $\qquad$ , w = $\qquad$ , $h=$ $\qquad$
8. Write a formula to find the volume of a rectangular prism using $\ell, w$, and $h$ :
9. Write a second version of this formula using $B$ as the area of the base:
$V=$ $\qquad$

## VOLUME OF A CYLINDER

Follow your teacher's directions for $(1)-(7)$. Use $\pi=3.14$ as needed.


Find the volume of each cylinder described below.


## 11. Record the meaning of cylinder in My Word Bank.

## PRACTICE 1

Find the volume of each cylinder described below.


Find the height of each cylinder described below.

| 6. A cylinder with circumference of 62.8 |  |
| :--- | :--- |
| inches has volume $=628$ cubic inches. | 7. A cylinder with diameter $=8 \mathrm{~cm}$ has |
| volume $=400$ cubic cm. |  |
| Write in terms of $\pi=3.14$ and use $\pi=3.14$. |  |

## PRACTICE 2: EXTEND YOUR THINKING

In the opening problem, you created models for a square prism, triangular prism, and cylinder from an $8.5 \times 11$-inch piece of paper with a height of 8.5 inches. Then you found the volumes.

1. Go back to Paper Solids and update or correct your work if needed.
2. Suppose you created models for a square prism, triangular prism, and cylinder from an $8.5 \times 11$-inch piece of paper with a height of 11 inches. Which of the six models do you think would have the greatest volume? Why?
3. In the space provided on Paper Solids, sketch the following with 11-inch heights:

- Sketch \#4, a square prism,
- Sketch \#5, a triangular prism, and
- Sketch \#6, a cylinder.

Then find the areas of the bases and the
olumes.
4. Write conclusions based on your work. Compare volumes based on the height or shape of the base. Include which has the greatest
 olume and the least volume in your explanation.
5. A soup can is measured and found to have a radius of about 3.7 cm and a height of about 7.3 cm . The label on the can lists the volume as 310.52 mL . Is this a reasonable volume of soup? Explain. ( 1 cubic cm is equivalent to 1 mL .)

## A COIN PROBLEM

To the right is some information about coins.
Suppose you had a \$10 stack of dimes and a \$10 stack of quarters.

1. Make some predictions:

- Which stack will have the greatest weight?
- Which stack will have the greatest height?
- Which stack will have the greatest volume?

2. Compute the weight, height, and volume for the $\$ 10$ stacks of coins.


## VOLUME OF CONES AND SPHERES

We will develop formulas for the volume of a cone and a sphere and apply them to solve problems.
[8.G.9; SMP2, 3, 4, 3, 5, 6, 7, 8]

| GETTING STARTED |
| :--- |
| 1a. Write the formula for the volume of a <br> cylinder in words and using symbols. |
| 2a. Write the formula for the circumference <br> of a circle in words and using symbols. |
| 1b. Find the volume of a cylinder with a |
| height of 20 cmand diameter of 14 cm. |
| Express an exact answer in terms of $\pi$ |
| and an approximate answer using |
| $\pi=\frac{22}{7}$. |

## VOLUME OF A CONE AND A SPHERE

Follow your teacher's directions for $(1)-(5)$. Use $\pi=3.14$ as needed.


Find the volume of each figure below. Use $\pi=3.14$. Round appropriately.

7.

8. Record the meanings of cone and sphere in My Word Bank.

## ICE CREAM CONES

An ice cream store has two different kinds of cones. For a single scoop, they fill the cone with ice cream and then put a dome (half sphere) of ice cream on the top. Below are the dimensions and prices for one scoop. *Remember that $d=2 r$.

|  | Height | Top <br> Diameter* | Bottom <br> Diameter $^{*}$ | Cost |
| :--- | :---: | :---: | :---: | :---: |
| Sugar Cone | $4 \frac{5}{8}$ inches | 2 inches | 0 inches | $\$ 3.50$ |
| Cake Cone | 3 inches | $2 \frac{1}{2}$ inches | $1 \frac{1}{2}$ inch | $\$ 3.50$ |

1. Predict which option you think will have the most ice cream:

2. Rank the amount of ice cream from least to greatest. Show formulas and substitutions.

3. Which is the best buy? Which would you choose? Explain your reasoning.

## LINES, ANGLES, AND TRIANGLES

We will establish facts about angles in the interior and on the exterior of a triangle. We will introduce vocabulary and facts related to angles formed when two parallel lines are intersected by another line. We will use properties of parallel lines to solve problems.
[8.G.5; SMP2, 3, 5, 6, 7, 8]


Refer to Figure 1 for problems 1 - 2 .

1. Which one of the labeled points represents the vertex of the angle?
2. Circle all the names below that can correctly be used to name this angle.
$\angle A \quad \angle B \quad \angle A B C \quad \angle A C B$

Refer to Figure 2 for problems 3-5.
Name three different triangles that appear to be scaled copies of one another.
4. Name one quadrilateral that appears to be a parallelogram.


Use a protractor to find angle measures in degrees for the figures above.

| 6. $\|\angle d\|$ | 7. $\|\angle P\|$ | 8. $\|\angle K M N\|$ |
| :--- | :--- | :--- | :--- |
| 9. $\|\angle P Q N\|$ | 10. $\|\angle P R K\|$ | 11. $\|\angle P K R\|$ |

## TWO INVESTIGATIONS ROLLED INTO ONE

Follow your teacher's directions.


## ANGLES

1. Your teacher will give you some cards. Match vocabulary to descriptions and pictures.

| Vocabulary | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  |  |  |  |  |  |  |  |
| Picture |  |  |  |  |  |  |  |  |

Which card(s) were difficult to match up? Explain.

4. Refer back to your measurements in Getting Started for this lesson.

Does $|\angle P|+|\angle K|+|\angle R|=180$ ? Explain.

## ANGLE RELATIONSHIPS

Follow your teacher's directions for (1) - (5).

7. List all pairs of corresponding angles that have the same measures.
8. List all pairs of alternate interior angles that have the same measures.
9. List all pairs of alternate exterior angles that have the same measures.
10. Record the meanings of parallel and transversal in My Word Bank.

## PRACTICE 3

1. If two lines are cut by a transversal, and the three statements below are true, what do we know about the two lines?

- corresponding angles have equal measure
- alternate interior angles have equal measure
- alternate exterior angles have equal measure

2. In the figure to the right, assume lines that appear to be parallel are parallel. Label the parallel lines using arrow notation. Then find the measures of all labeled angles.
$|\angle a|=$

| $\|\angle f\|=\_$ | $\|\angle g\|=$ |
| :--- | :--- |
| $\|\angle h\|=$ | $\|\angle j\|=$ |



Name one pair of each of the following types of angles from the figure above.

| 3. Acute, vertical angles | 4. Right, vertical angles | 5. Obtuse, vertical angles |  |
| :--- | :--- | :--- | :--- |
| 6. Form a straight angle | 7.Corresponding angles <br> with the same measures <br> 9. Alternate interior angles <br> with the same measures <br> 10. Adternate exterior angles <br> with the same measures <br> angles | Adjent, supplementary | 11. Vertical, supplementary <br> angles |

12. When do corresponding angles have equal measures?
13. For the triangle in the figure above, name two exterior angles whose measures are equal to the sum of $|\angle m|+|\angle d|$.
14. Record the meanings of corresponding angles, alternate interior angles, alternate exterior angles, and exterior angle of a triangle in My Word Bank.

## ANGLE FACTS RELATED TO TRIANGLES


11. Choose any three unused cards so that you can draw a figure that incorporates all three of them. Describe your examples.


Use this figure for the problems below.
Write important information into the figure as needed.
Let $|\angle x|=n^{\circ}$
$|\angle y|=(n-10)^{\circ}$
$|\angle z|=(2 n+10)^{\circ}$

1. Find $n$.

## PRACTICE 4


2. Find the measures of each angle in the triangle.

3. The vertical angle to $\angle z$ is $\qquad$ and it measures
$\qquad$
4. An angle adjacent to $\angle x$ is $\square$ .
5. The alternate interior angle to $\angle x$ is $\qquad$ and it measures $\qquad$ .
6. The measure of $\angle h$ is and it is an alternate exterior angle to the sum of angles
$\qquad$ and
7. The measure of $\angle c$ is $\qquad$ and it corresponds to the sum of angles $\qquad$ and $\qquad$ .
8. The angle that corresponds to $\angle k$ is $\qquad$ and it measures $\qquad$ .
9. The exterior angle of the triangle that is adjacent to $\angle y$ is $\qquad$ and it measures $\qquad$ .
10. The two angles in the interior of the triangle that have the same sum as $\angle c$ are angles and $\qquad$ .
11. Corresponding angles in the figure above have the same measure. Under what condition do corresponding angles NOT have the same measure?

## REVIEW

## POSTER PROBLEMS: PLANE AND SOLID FIGURES

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D.
- Each group will start at a numbered poster. Our group start poster is - Each group will have a different colored marker. Our group marker is

Part 2: Do the problems on the posters by following your teacher's directions.


Use $\pi=3.14$ and round results to two decir
A. Write the name of the solid figure and its volume formula. If a second, equivalent formula exists, include it.
B. Find the volume of the solid.
C. Find the volume if the height of the solid is doubled.
D. Find the volume of the solid if ALL given measures on the figure are doubled.

Part 3: Return to your seats. Work with your group, and show all work.
Compare the three volume measures in parts B - D for your "start problem." Record what you notice below. Be ready to share with the class.

## MATCH AND COMPARE SORT: PLANE AND SOLID FIGURES

Your teacher will give you some cards. Cut them out.

1. Individually, match words with descriptions. Record results.

| Card set $\triangle$ |  |  | Card set $\bigcirc$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Card <br> number | word | Card <br> letter | Card <br> number | word | Card <br> letter |
| I |  |  | I |  |  |
| II |  |  | II |  |  |
| III |  |  | III |  |  |
| IV |  |  | IV |  |  |

2. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

3. Partners, choose another pair of numbered matched cards and discuss the attributes that are the same and those that are different.

## A BIG PUZZLE

Use the figure below for all problems. For problems $1-8$, name an angle that is:

| 1. adjacent to $\angle m$. | 2. vertical to $\angle r$. | 3. supplementary to $\angle m$. |
| :--- | :--- | :--- |
| 4. corresponding to $\angle z$. | 5. complementary to $\angle e$. | 6. alternate interior to $\angle u$. |
| 7. alternate exterior to $\angle j$. | 8. an exterior angle of a triangle and equal to $\|\angle h\|+\|\angle x\|$ |  |

Find the angle measures in any order. Notice that $|\angle a|,|\angle h|$ and $\mid \angle z$ are given.


12. $|\angle d|=$ $\qquad$
16. $|\angle h|=30^{\circ}$
19. $|\angle m|=$ $\qquad$ 20. $|\angle n|=$ $\qquad$
25. $|\angle t|=$
26. $|\angle u|=$

27. $|\angle v|=$

23. $\qquad$ 24. $|\angle s|=$ $\qquad$
28. $|\angle w|=$ $\qquad$


## FOCUS ON VOCABULARY



3 Angles in the same relative location
5 A line that intersects two or more other lines
Two angles that share a common side
10 One of the parallel faces of a cylinder or prism
11 The point where two rays of an angle meet

## Down

1 Solid with two parallel circular bases

2 Tennis ball is an example

3 Solid with circular base and an apex

4 Alternate angles on the inside of lines on opposite sides of a transversal
6 Angle adjacent to a triangle's interior angle
7 Measured in degrees

9 Lines that never meet

## SPIRAL REVIEW

1. READY-X. Solve for the values of $R, E, A, D, Y, X$. Sums of rows and columns are indicated at the end of each row and column.
ROWs
2. Solve each equation below.


## SPIRAL REVIEW

## Continued

3. Write an expression for each word description.
a. 3 more than 4 times a number
b. The difference of twice a number and 20
c. 2 less than the sum of a number and 8
d. The quotient of a number and the sum of 5 and 7
4. Find the value of $N$.

## REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.
 your responses. Explain something you understand better now than before or something you would still like to work on.
2. Mathematical Practice. Explain how the structure of a previously learned concept helped you learn a new one [SMP7]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

3. More Connections. Describe something new that you learned about shapes and space.

## STUDENT RESOURCES

| Word or Phrase | Definition |
| :---: | :---: |
| adjacent angles | Two angles are adjacent if they have the same vertex and share a common ray, and they lie on opposite sides of the common ray. <br> $\angle A B C$ and $\angle C B D$ are adjacent angles. |
| alternate exterior angles | When two lines in a plane are cut by a transversal, two angles on opposite sides of the transversal and outside the two lines are referred to as alternate exterior angles. When parallel lines are cut by a transversal, alternate exterior angles have the same measure. <br> Line $m$ is not parallel to line $n$. <br> Line $m$ is parallel to line $n$. <br> $\angle 1$ and $\angle 2$ are <br> $\angle 1$ and $\angle 2$ are alternate exterior angles. alternate exterior angles. $\|\angle 1\|=\|\angle 2\|$ |
| alternate interior angles | When two lines in a plane are cut by a transversal, two angles on opposite sides of the transversal and between the two lines are referred to as alternate interior angles. When parallel lines are cut by a transversal, alternate interior angles have the same measure. <br> $\angle 1$ and $\angle 2$ are alternate interior angles. <br> Line $m$ is parallel to line $n$. <br> $\angle 1$ and $\angle 2$ are alternate interior angles. $\|\angle 1\|=\|\angle 2\|$ |
| complementary angles | Two angles are complementary if the sum of their measures is $90^{\circ}$. <br> Two angles that measure $30^{\circ}$ and $60^{\circ}$ are complementary. |




## Geometry Notation

Here are some geometry notations used in these lessons.

- Points are named by capital letters.
- The symbol for triangle is $\triangle$.
- The symbol for angle is $\angle$
- Absolute value signs are used to denote nonnegative quantities that measure the "size" of something, such as length or angle measure.

The measure of an angle called $\angle N$ is denoted by at $N$ indicates that $\angle L N M$ is a right angle, that is,

In naming a triangle, vertices may be listed in either a clockwise direction. For example, the triangle may be
$|\angle N|$. The small square
hat $|\angle L N M|=90^{\circ}$.

In naming an angle, vertices may be listed in either a counterclockwise direction. In the triangle above, the can be denoted by $\angle N L M, \angle M L N, \angle L$ or $\angle 1$.

The pair of adjacent angles to the right are $\angle F G J$ and $\angle H G F$. Using $\angle G$ to name an angle is unclear They share the common ray $\overrightarrow{G F}$. The two adjacent angles together form the angle $\angle$
clockwise or counter -
named $\triangle L M N$ or $\triangle L N M$.


## Volume Formulas



## Transversals and Parallel Lines

In this figure, line $k$ is a transversal. Lines $m$ and $n$ are NOT parallel.
When two lines in a plane are cut (crossed) at two points by a transversal, eight angles are created. Some of these pairs of angles have special names.
alternate interior angles
corresponding angles
$\angle 1$ and $\angle 5 \quad \angle 2$ and $\angle 6$
$\angle 3$ and $\angle 7 \quad \angle 4$ and $\angle 8$
3 and $\angle 6$
4 and $\angle 5$
Here are three important properties of the angles formed when a transversal cuts two parallel lines.

1. If two parallel lines are cut by a transversal, then alternate interior angles have the same measure. Example: $|\angle 3|=|\angle 6|$ and $|\angle 4|=|\angle 5|$
2. If two parallel lines are cut by a transversal, then have the same measure.
Example: $|\angle 1|=|\angle 8|$ and $|\angle 2|=|\angle 7|$
3. If two parallel lines are cut by a transversal, then have the same measure.
Example: $|\angle 2|=|\angle 6|$ and $|\angle 4|=\mid \angle 8$

## Interior and Exterior Angles in Triangles

Here are two important facts about angle sums in triangles.

1. The sum of the measures of the angles in a triangle is equal to $180^{\circ}$.

$$
|\angle d|+|\angle b|+|\angle e|=180^{\circ}
$$

2. The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

$|\angle b|+|\angle e|=|\angle f|$

## COMMON CORE STATE STANDARDS

## STANDARDS FOR MATHEMATICAL CONTENT

| STANDARDS FOR MATHEMATICAL CONTENT |  |
| :--- | :--- |
| 8.G.A | Understand congruence and similarity using physical models, transparencies, or geometry <br> software. |
| 8.G.5 | Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about <br> the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for <br> similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the <br> three angles appears to form a line, and give an argument in terms of transversals why this is so. |
| 8.G.C | Solve real-world and mathematical problems involving volume of cylinders, cones, and <br> spheres. |
| 8.G.9 | Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world <br> and mathematical problems. |
| SMP1 | Make sense of problems and persevere in solving them. <br> SMP2 |
| Reason abstractly and quantitatively. <br> Construct viable arguments and critique the reasoning of others. <br> SMP4 | Model with mathematics. <br> SMP5 |
| SMP6 appropriate tools strategically. |  |



MathLinks: Grade 8 (2 ${ }^{\text {nd }}$ ed.) ©CMAT

