Name

Period _____ Date _____

UNIT 5 STUDENT PACKET	GRADE 7	Lin	ks
RATIONAL NUMBER MUL	TIPLICATION AN	D DIVISION	
		Monitor Your Progress	Page
My Word Bank			0
5.0 Opening Problem: More of Mr. More	imer's Magic		1
 5.1 Multiplying and Dividing Integers Develop rules for integer multiplication Use the inverse relationship between to establish rules for integer division. Multiply and divide using rules for integer 	nusing a counter model. multiplication and division gers.	3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0	2
 5.2 Multiplying and Dividing Rational N Extend multiplication and division rule numbers using number lines. Deepen understanding of products an rational numbers. 	umbers s for integers to rational d quotients involving	3 2 1 0 3 2 1 0	9
 5.3 Order of Operations Establish order of operations conventions simplify expressions. Solve problems involving rational numbers 	ions and apply them to abers.	3 2 1 0 3 2 1 0	18
Review			24
Student Resources			31

Parent (or Guardian) signature _____

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See **Student Resources** for mathematical vocabulary.

MORE OF MR. MORTIMER'S MAGIC

Merrimack Mortimer is at it again. He decides that he wants to heat up and cool down his liquids faster by putting in and removing pre-made packages of magic cubes. Remember, each cube changes the temperature by 1 degree.

Explain how the temperature of the liquid changes in each of the following situations. Remember that each situation is totally independent.

- 1. Mortimer puts in 2 packs of 4 hot cubes.
- 2. Mortimer puts in 5 packs of 4 cold cubes.
- 3. Mortimer removes 4 packs of 3 hot cubes.
- 4. Mortimer removes 3 packs of 5 cold cubes.
- 5. Describe four different ways for Mortimer to make a liquid 24 degrees hotter using premade packs.

Mortimer puts in:	Mortimer puts in:
Mortimer removes:	Mortimer removes:

MULTIPLYING AND DIVIDING INTEGERS

We will use a counter model to generalize rules for integer multiplication and extend these rules to integer division. We will use these rules to multiply and divide integers. [7.NS.1d, 7.NS.2ac, 7.NS.3, 7.EE.3; SMP3, 5, 6, 7, 8]

MULTIPLYING INTEGERS WITH COUNTERS 1

Use these sentence frames to help think through integer multiplication. **Do not write in these.**

MULTIPLYING INTEGERS WITH COUNTERS 2

Use these sentence frames to help think through integer multiplication. **Do not write in these.**

• Taking out packs of cold cubes makes a liquid ______.

PRACTICE 1

Compute. Refer to the script from the previous pages and draw pictures as desired.

1. (4) • (-5)	2. (-4) •	(3)	3.	(-3) • (-5)				
4. (3) • (-1)	5. (-5)•	(2)	6.	(-1) • (-2)				
7. Summarize the rules for integer multiplication.								
The product of two positive numbers is								
The product of two negative numbers is								
The product of one positive and one negative number is								

Compute without using counters or drawing pictures. If NOT done mentally, show your work.

8. (-3) • (-10)	9. (3) • (-10)	10. (-3) • (10)
11. (-30) • (-10)	12. (-3) • (100)	13. (30) • (-100)
14. (-3) • (17)	15. (-3) • (-241)	16. (-31) • (25)
173 + (-10)	18. 3 + (-10)	193 + 10

RELATING MULTIPLICATION AND DIVISION

- 1. Record the meanings of <u>quotient</u> and <u>inverse operation</u> in **My Word Bank**.
- 2. Use the fact that division is the inverse of multiplication to fill in the blanks.

We will use the shorthand **pos** for a positive number and **neg** for a negative number. Circle the correct result.

3.	pos ÷ pos	→ pos	neg	4.	neg ÷ neg	\rightarrow	pos	neg
					~			
5.	pos ÷ neg	\rightarrow pos	neg	6.	neg ÷ pos	\rightarrow	pos	neg

7. How do the rules for multiplying integers compare to the rules for dividing integers?

Compute.						
814 ÷ 7	9. 15	÷ (-3)	10.	-25 ÷ (-5)		
11 <u>20</u> -4	12. $\frac{24}{-6}$		13.	<u>-170</u> 10		

- 16. Silvia hides some counters in her left hand and some more in her right hand. Each hand below has either all negatives or all positives. She challenges you to answer each question. Clearly explain your answers.
 - a. "The product of the amounts in my hands is 50, and the sum is -15. What do I have in each hand?"

"The product of the amounts in my hands is -36, and the sum is 9. What do I have in each hand?"

PRAC	CTICE 3
 During a cold week in Wisconsin, the temperature each day at noon in Fahrenheit was 4°, -6°, -1°, 3°, and 0°. 	 2. During the same cold week in Wisconsin, the temperature each day at midnight in Fahrenheit was -4°, -6°, -10°, -3°, and -7°. Write a numerical expression that can be
used to find the average noontime temperature for the week and simplify the expression.	used to find the average midnight temperature for the week and simplify the expression.
3. A fish is swimming 15 feet below sea level.	4. The elevation of water in a lake rose 15 inches per month for 3 months and then dropped 2 feet per month for 4 months.
a. What number represents the fish's elevation when zero represents sea level?	a. Write a numerical expression that can be used to describe the elevation change in inches. Then simplify the expression.
b. A dolphin is swimming 3 times as deep as the fish. What numerical expression represents the elevation that is 3 times the depth of the fish?	b. After 7 months, was the elevation of the lake higher or lower than the starting elevation?
c. What number represents the elevation of the dolphin?	c. By how much?

MULTIPLYING AND DIVIDING RATIONAL NUMBERS

We will use number lines, and the inverse relationship between multiplication and division, to extend the multiplication and division rules for integers to the set of rational numbers. We will explore products and guotients involving rational numbers in more depth.

[7.NS.2abc, 7.NS.3; SMP2, 3, 6, 7, 8]

|--|

3. Write the following improper fractions as mixed numbers.

a. <u>11</u>	b. $\frac{-20}{3}$
--------------	--------------------

- 4. Record the meaning of <u>rational numbers</u> in **My Word Bank**.
- 5. Why are all of the numbers in problems 1 3 above rational?

NUMBER LINE MULTIPLICATION

16. Do the multiplication rules we learned in previous lessons hold for (1) – (15) above? ______ Do you think that these rules hold for all rational number multiplication?

PRACTICE 4

PRACTICE 5

Complete the puzzle below using the given expression. Then find total sums of rows and columns (exclude the gray numbers). Round decimals to the nearest 100th. Make sure the sums are equal for the very bottom row and far right column.

DETERMINING THE SIGN OF A PRODUCT

Compute each product

00111						
1.	(-1) • (-2) • (3)	2.	(-1) •	(-2) • (-3)	3.	(-1) • (-2) • (3) • (-4)
4.	(-1) • (-2) • (-3) • (-4)	5.	(-1) •	(2) • (-3) • (4)	6.	(-1) • (0) • (-3) • (-4)
7. Ma	ake conjectures about mu	ıltiplyiı	ng nonz e	ro numbers.		
a.	If there are an odd num	per of	negative	factors, the proc	duct is _	positive / negative
b. Witho	If there are an even nun ut computing, determine	nber o wheth	f negativ er each	e factors, the pro	oduct is ve. nega	positive / negative
8.	(-7)(-9)(11)(-24)	9.	(-0.7)	(1.9)(0.8)(-2.6)	10.	(-8.02)(-3.9)(0)(-5.24)
Write	<, >, or = for each.					
11.	(-1) • (-1) • (1)	(-1) •	(-1) • (-1)		
12.	(-2) • (-3) • (-4) • (10)		-2•(-	3) • (-4) • (-10)		
13.	6(-5)(-2) (-6)(5	5)(2)				
11	(2) (2) (4) (10)		0 - //	(1)		

14.
$$(-2) \bullet (-3) \bullet (-4) \bullet (10)$$
 _____ -2 • (3) • (-4) • (-10)

15.
$$\frac{-40}{10}$$
 $\frac{-40}{-10}$
 16. $\frac{-36}{-12}$
 $-\left(-\frac{36}{12}\right)$

 17. $-4 + (-8)$
 $-4 - (-8)$
 18. $-2 - 6$
 $-2 + (-6)$

19. Compute.
$$\left(-\frac{2}{3}\right)\left(-1\frac{1}{5}\right)\left(-2\frac{1}{8}\right)$$

MathLinks: Grade 7 (2nd ed.) ©CMAT Unit 5: Student Packet

а

DETERMINING THE SIGN OF A QUOTIENT

Divide each fraction below. Determine whether the quotient is positive or negative based upon integer division rules. If the quotient is not an integer, write it as a fraction in simplest form.

1. $-\frac{10}{5}$	2. <u>-10</u> -5	3.	<u>-10</u> 5	4. $\frac{10}{-5}$	$5\left(-\frac{10}{5}\right)$
6 <mark>4</mark> 16	7. <u>-4</u> -16	8.	<u>-4</u> 16	9. $\frac{4}{-16}$	10 (- <u>4</u>) - <u>16</u>)

- 11. For the expressions below, *a* and *b* are positive integers. Circle the expressions below that represent negative numbers.
 - $\frac{a}{b}$ $\frac{-a}{-b}$
- 12. Mariam says that $\frac{-2}{-7}$ and $-\frac{2}{7}$ represent the same number. Is she correct? _____ Explain.
- 13. Yunus says that $\frac{-12}{42}$ and $\frac{12}{42}$ represent the same number. Is he correct? _____ Explain.
- 14. How do you know whether the quotient of two integers will be a positive number?

15. How do you know whether the quotient of two integers will be a negative number?

16. How do you know whether the quotient of two integers will be an integer?

 $-\left(\frac{a}{b}\right)$

WRITING RATIONAL NUMBERS IN DIFFERENT FORMS

Write each rational number below in at least three different equivalent forms.

1.	- <u>8</u> 16	2.	<u>-8</u> -6	3. $-\frac{13}{5}$
4.	0 13	5.	<u>18</u> -2	6. $\frac{-60}{20}$

Write each number in the form described in the definition of rational number to show that they are rational.

712	8.	4.75	9. $-3\frac{1}{2}$

- 10. Brecken says that $-5\frac{2}{3}$ and $\frac{17}{-3}$ represent the same number. Is he correct? ______ Explain.
- 11. For the expressions below, *a* is a positive integer and *b* is a negative integer. Circle the expressions below that represent negative numbers.
 - $\frac{a}{b} \qquad -\frac{a}{-b} \qquad \frac{-a}{b} \qquad \frac{a}{-b} \qquad -\left(\frac{a}{b}\right)$
- 12. Choose one of the positive expressions from problem 11 (un-circled) and explain how you know it is positive. Use a numerical example.

13. Choose one of the negative expressions from problem 11 (circled) and explain how you know it is negative. Use a numerical example.

EXPLORING DIVISION INVOLVING ZERO

Fill in the blanks and answer the questions in the table below.

	Statement/Question	Division Expression	Does the question make sense mathematically? What is the answer?
1.	Four friends are equally sharing 16 grapes. How many grapes does each friend get?		
2.	Four friends are equally sharing 0 grapes. How many grapes does each friend get?		
3.	Four friends are equally sharing 2 strawberries. How many strawberries does each friend get?		
4.	Zero mends are equally sharing 15 strawberries. How many strawberries does each friend get?		

Mathematically, we say that division by zero is **undefined**.

Fill in each box with a solution if one exists, an \mathbf{N} if no solution exists, or an \mathbf{I} if an infinite number of solutions exist.

5.2 Multiplying and Dividing Rational Numbers

Comp	ute, if possible.					
1.	-20 • (-30) • (-200)	2.	-80 ÷ 10		3.	(-10)(-20)(30)
4.	64 ÷ (-8)	5.	(-1)(-2)(-3)(-4)(-5)	6.	-60 ÷ (-30)
7.	(-12)(0)(-13)(210)	8.	0 ÷ 10		9.	20 ÷ 0
10.	(-17)(53)(0)(-27)	11.	-120 + 20		12.	-80 + (-40)
13.	-30 + 70	14.	100 – (-200)		15.	100 - 200
16.	<u>0</u> 3	17.	-100 – (-200)		18.	$\frac{3}{0}$
19.	<u>-45</u> -9	20.	$-\left(\frac{-36}{6}\right)$		21.	$-\left(-\frac{28}{7}\right)$
22. V	Why is $\frac{-10}{5}$ not equal to	<u>- 10</u> ? - 5				

PRACTICE 6

- 23. If the product of six integers is negative, at most how many of the integers can be negative?
- 24. Lydia hid some counters in each hand. Each hand had either all negatives or all positives. Lydia said to her group, "The sum of the amounts in my hands is -12 and the product is -28. What do I have in each hand?" How should her group respond?"

ORDER OF OPERATIONS

We will make sense of the order of operations conventions and solve problems involving rational numbers.

[7.NS.1d, 7.NS.2abc, 7.NS.3, 7.EE.3; SMP2, 3, 6]

GETTING STARTED

Put the following statements in an order you think makes the most sense. Then predict whether you think most of your classmates will agree with you or not.

1.	tie your shoelaces	
	put on your socks	
	put on your shoes	
	Prediction:	
2.	eat dinner	
	do homework	
	do something recreational like	playing basketball or drawing a picture.
	Prediction:	

You **do not** need to calculate anything for the following problems. Place operation symbols between the symbols to make numerical expressions that are correct translations of the situation.

3. The cost of buying 2 bottles of juice for \$1.50 each and 3 bags of pretzels for \$2.00 each.

4. The total area of the two rectangles to the right combined.

For problem 4

EXPONENTS

1. Record the meaning of <u>exponential notation</u> in **My Word Bank**.

Write each expression as an appropriate product. Then compute.

17. Why do you think we call a number to the second power "squared," and a number to the third power "cubed?"

THE ORDER OF OPERATIONS CONVENTIONS

Use all four of the numbers 2, 3, 4, and 5 exactly once in each problem below. Use any of the four operations and any grouping symbols as needed.

PRACTICE 8

Here are two equivalent equations for converti	ng between the Celsius and Fahrenheit scales.
Let $C =$ degrees Celsius	and <i>F</i> = degrees Fahrenheit
$F = \frac{9}{5}C + 32$	$C = \frac{5}{9} (F - 32)$
 The NFL Championship game on December 31, 1967 between the Green Bay Packers and the Dallas Cowboys in Green Bay, Wisconsin is known as the "Ice Bowl." The low temperature for that game was 13 degrees below zero (F). a. Write this temperature as an integer. 	 2. The weather report before an NFL playoff game on January 5, 2014 (also in Green Bay) was expected to be 17 degrees below zero (F).* a. Write this temperature as an integer.
b. Choose one of the equations above. Substitute this value to solve for C.	b. Choose one of the equations above. Substitute this value to solve for <i>C</i> .
	Ice Bowl in 1967?
3. A soccer match in Trondheim, Norway in December, 2010 reported a kickoff temperature of -14°C. What is this temperature in degrees Fahrenheit?	4. In Sochi, Russia, the historical average high temperature for January is about 50°F. When they hosted the XXII Olympic Winter Games in 2014, temperatures reached 20°C. Is this temperature higher or lower than the historical average high, and by how much?
(*The temperature that day never actually reached the record low.)	

PRACTICE 9: EXTEND YOUR THINKING

Recall that the commutative, associative, and distributive properties allow us to operate on numbers in different orders. Use these properties to make the following calculations easier. Describe your process.

Prove whether each expression represents a rational number or not. In other words, show whether the expression can be written in the form $\frac{a}{b}$, a and b are both integers, and $b \neq 0$.

MathLinks: Grade 7 (2nd ed.) ©CMAT Unit 5: Student Packet

REVIEW					
OPEN MIDDLE: RATIONAL NUMB	R MULTIPLICATION AND DIVISION				
Your teacher will turn over 4 integer cards.					
Record their values:					
For each problem below, write an expression us Show your work. You may use any of the four o	sing the four numbers above exactly once each. operations and any grouping symbols you know.				
 1. Write an expression with a value as close to 1 as possible. Expression:	 2. Write an expression with a value as close to -1 as possible. Expression:				
3. Write an expression with the greatest value possible. Expression:	 4. Write an expression with the least value possible. Expression:				

POSTER PROBLEMS: RATIONAL NUMBER MULTIPLICATION AND DIVISION

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D.
- Each group will start at a numbered poster. Our group start poster is _
- Each group will have a different colored marker. Our group marker is _

Part 2: Do the problems on the posters by following your teacher's directions.

Ro	und 1:								
	Poster #	1	2	3	4	5	6	7	8
	Start #	1	2	3	4	5	6	7	8

A. Create a 4-column chart like the one below to use for steps 1 - 7:

step number	step directions	Round 1 work Round 2 work

- B. Do Step 1: Copy your start number from the table above onto your chart.Do Step 2: Multiply the start number by -4.
- C. Do Step 3: Add -10 to the result. Do Step 4: Subtract -6 from the result.
- D. Do Step 5: Divide the result by -4.

Do Step 6: Subtract the given start number from the result.

E. Do Step 7: Add -1 to this result. Circle this number.

(For **Round 2**, change A – D roles, and start over with the opposite reciprocal of your start number. For example, a group that started with 12 in Round 1, would now start with $-\frac{1}{12}$.)

Part 3: Return to your seats. Work with your group.

1. Was the circled number on every poster the same? _____

2. If not, use a start number given to you by your teacher and rework the problem.

ORDER OF OPERATIONS PAIR SHARE

Do "across" problems on another piece of

Partner B

- Do "down" problems on another piece of • paper.
- Check B's work on the "down" problems • using a calculator.
- Check A's work on the "across" problems • using a calculator.

Down

1.

3.

4.

5.

Across

۲

paper.

2. 3. 12 18 ` + 245 -3 - 4 • 2 6. •(1,000) 1 – 2 7. -(-600 - 800 - 200)8. $\left(15-\frac{21}{3}+12\right)\bullet(80)$

-4 - (-3)(-6) + 22 + 150 9.

 $\left(\frac{-5-3\cdot 5}{-7-3}\right)\bullet(200)$ 6.

 $-4 + \left(\frac{-16}{2}\right)(-3-1) + 72$

 $[-3 - 5(-6)] \bullet (100)$

 $\left(\frac{-8+4-6}{-11+1}\right)+720$

 $[100 + (-2)(-2)(-2)] \bullet (1,000)$

VOCABULARY REVIEW

SPIRAL REVIEW

1. Follow the math path to computational fluency.

SPIRAL REVIEW

- 3. An art supply store sells colored pencils in different sets.
 - Set A: \$5.29 for 24 pencils
 - Set B: \$7.69 for 50 pencils
 - Set C: \$5.19 for 18 pencils

Find the unit rate in pencils per dollars for each set. Clearly show which is the best deal.

- 4. While exercising Odell walked $\frac{1}{3}$ of a mile in $\frac{1}{8}$ of an hour. At this rate, how far will Odell have traveled in an hour?
- 5. Solve each equation below.

a. m + 43 = 91	b.	15 <i>n</i> = 165
c. 83.5 = x - 12.2	d.	60.12 = 0.6 <i>y</i>
e. $\frac{1}{6} + m = 5$	f.	$12 = \frac{1}{4}a$
g. $y-2\frac{1}{2} = 3\frac{1}{8}$	h.	$2\frac{1}{5}n = 8\frac{4}{5}$
	a. $m + 43 = 91$ c. $83.5 = x - 12.2$ e. $\frac{1}{6} + m = 5$ g. $y - 2\frac{1}{2} = 3\frac{1}{8}$	a. $m + 43 = 91$ b. c. $83.5 = x - 12.2$ d. e. $\frac{1}{6} + m = 5$ f. g. $y - 2\frac{1}{2} = 3\frac{1}{8}$ h.

REFLECTION

1. **Big Ideas**. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

Give an example from this unit of one of the connections above.

- 2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before.
- 3. **Mathematical Practices.** How did the relationship between multiplication and division help you to make sense of these rational number operations? Give an example [SMP 7, 8]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.
- 4. **Making Connections.** Look back at the patterns and rules you established for multiplying and dividing negative numbers in Lesson 2. Which pattern did you find most useful or interesting?

STUDENT RESOURCES

Word or Phrase	Definition
distributive	The distributive property states that $a(b + c) = ab + ac$ and
property	(b + c)a = ba + ca for any three numbers a, b, and c.
	3(4+5) = 3(4) + 3(5) and $(4+5)8 = 4(8) + 5(8)$
exponential notation	The <u>exponential notation</u> b^n (read as " b to the <u>power</u> n") is used to express n factors of b. The number b is the <u>base</u> , and the number n is the <u>exponent</u> .
	$2^3 = 2 \cdot 2 \cdot 2 = 8$. The base is 2 and the exponent is 3. $3^2 = 3 \cdot 3 = 9$. The base is 3 and the exponent is 2.
integers	The <u>integers</u> are the whole numbers and their opposites. They are the numbers 0, 1, 2, 3, and -1, -2, -3,
inverse operation	The inverse operation to a mathematical operation reverses the effect of the operation.
	Addition and subtraction are inverse operations. Multiplication and division are inverse operations.
product	A <u>product</u> is the result of multiplying two or more numbers or expressions. The numbers or expressions being multiplied to form the product are <u>factors</u> of the product.
	factor factor product
quotient	In a division problem, the <u>quotient</u> is the result of the division. $12 \div 3 = 4$ dividend divisor quotient
rational number	Rational humbers are numbers expressible in the form m where m and n are integers
	and $n \neq 0$.
	$\frac{3}{5}$ is rational because it is a quotient of integers.
	$2\frac{1}{3}$ and 0.7 are rational numbers because they can be expressed as quotients of
	integers, namely $\frac{7}{3}$ and $\frac{7}{10}$, respectively.
	$\sqrt{2}$ and π are NOT rational numbers. They cannot be expressed as a quotient of integers.
	$\frac{7}{0}$ is undefined. It is NOT a rational number.

Symbols fo	or Multiplicatio	on	
The product of 8 and 4 can be written as:			
8 times 4 8×4	8•4	(8)(4)	8 <u>× 4</u>
The product of 8 and the variable x is written simply multiplication. The \times could be misinterpreted as the decimal point.	y as 8x. We are e variable x and	cautious about us d the • could be	sing certain symbols for misinterpreted as a
Symbols	s for Division		
The quotient of 8 and 4 can be written as:			
8 divided by 4 8 ÷ 4	4)8	8 4	8/4
In algebra, the preferred way to show division is with	fraction notation.		
Mr. Mortimer's Magic Hot a	nd Cold Cubes	s for Multiplicat	tion
 Mr. Mortimer discovered an amazing way to control the cubes to change the liquid's temperature. These magnice cubes melt, but magic cold cubes do not. Hot Cubes (the basics): If you add 1 hot cube to a liquid, the liquid heats of the second second	temperature of ic cubes never n up by 1 degree. d cools down by uid heats up. ke adding 2 • 10 he liquid cools do s is like subtraction dis down by 1 deg uid heats up by 1 quid cools down. like adding 2 • 10 the liquid heats up es is like subtract	and the invent melt or change in a 1 degree. 0 = 20 hot cubes. 0 = 20 hot cubes. 0 = 20 hot cubes. 0 = 20 hot cubes. 0 = 20 cold cubes up. ting 2 • 10 = 20 cold cubes.	t cubes.

Using Order of Operations to Simplify Expressions				
Order of Operations	Example	Comments		
	$\frac{40-2 \cdot 5^2 - (8-6)}{4+2 \cdot 10}$			
Simplify expressions within grouping symbols.	$\frac{40 - 2 \bullet 5^2 - 2}{4 + 2 \bullet 10}$	Parentheses are grouping symbols: (8-6) = 2 The fraction bar, used for division, is also a grouping symbol, so the numerator and denominator must be simplified completely prior to dividing.		
Calculate all the expressions with exponents.	$\frac{40 - 2 \cdot 25 - 2}{4 + 2 \cdot 10}$	5 ² = 5 • 5 = 25		
Perform multiplication and division from left to right.	$\frac{40-50-2}{4+20}$	In the numerator: Multiply $2 \bullet 25 = 50$. In the denominator: Multiply $2 \bullet 10 = 20$.		
Perform addition and subtraction from left to right.	- <u>12</u> 24	In the numerator: Subtract from left to right $40 - 50 - 2 = -12$. In the denominator: Add $4 + 20 = 24$		
	$\frac{-1}{2}$ or $-\frac{1}{2}$	Now the groupings in both the numerator and denominator have been simplified, so the final division can be performed.		
X	<u>.</u>	·		

COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT		
7.NS.A	Apply and extend previous understandir multiply, and divide rational numbers.	ngs of operations with fractions to add, subtract,
7.NS 1	Apply and extend previous understandings numbers; represent addition and subtraction	of addition and subtraction to add and subtract rational n on a horizontal or vertical number line diagram [.]
d	Apply properties of operations as strategies	to add and subtract rational numbers.
7.NS.2	Apply and extend previous understandings divide rational numbers:	of multiplication and division of fractions to multiply and
а	Understand that multiplication is extended f operations continue to satisfy the properties leading to products such as (-1)(-1) = 1 and products of rational numbers by describing	rom fractions to rational numbers by requiring that s of operations, particularly the distributive property, the rules for multiplying signed numbers. Interpret real-world contexts.
b	Understand that integers can be divided, printegers (with non-zero divisor) is a rational $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of	ovided that the divisor is not zero, and every quotient of number. If p and q are integers, then rational numbers by describing real-world contexts.
с	Apply properties of operations as strategies	to multiply and divide rational numbers.
7.NS.3	Solve real-world and mathematical problem	is involving the four operations with rational numbers.
7.EE.3	Solve multi-step real-life and mathematical numbers in any form (whole numbers, fraction properties of operations to calculate with nu- appropriate; and assess the reasonableness strategies. For example: If a woman making additional 1/10 of her salary an hour, or \$2. towel bar 9 3/4 inches long in the center of the bar about 9 inches from each edge; this computation.	problems posed with positive and negative rational ions, and decimals), using tools strategically. Apply imbers in any form; convert between forms as is of answers using mental computation and estimation g \$25 an hour gets a 10% raise, she will make an 50, for a new salary of \$27.50. If you want to place a a door that is 27 1/2 inches wide, you will need to place vestimate can be used as a check on the exact
SMP1 Make sense of problems and persevere in solving them		
SMP2 Reason abstractly and quantitatively		
SMP3 Construct viable arguments and critique the reasoning of others		
SMP5 Use appropriate tools strategically.		
SMP6 Attend to precision.		
SMP7 Look for and make use of structure.		
SMP8 Look for and express regularity in repeated reasoning.		

