$\qquad$ Date $\qquad$


## RATIONAL NUMBER ADDITION AND SUBTRACTION



Parent (or Guardian) signature $\qquad$
MathLinks: Grade 7 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 4: Student Packet

## MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.


## MR. MORTIMER'S MAGIC CUBES

As a child, Merrimack Mortimer loved chemistry, and he grew to become an inventor. He called one of his great inventions Magic Hot and Cold Cubes. Here we will learn about them in greater detail.


## COUNTERS AND ADDING INTEGERS

We will use counters to develop concepts about integers and use this model to generalize rules for integer addition. We will add integers using these rules.
[7.NS.1ab; SMP1, 2, 3, 5, 6, 7, 8]

## GETTING STARTED

1. Record the meanings of positive numbers, negative numbers, and integers in My Word Bank.
2. Look closely at the following list of numbers:
$-1$
0 $-5$ 23
a. Circle all of the numbers that are integers.
b. Choose one number that is NOT an integer and explain why it is not an integer.
3. Record the meaning of rational numbers in My Word Bank.

| $\frac{3}{5}$ | $\frac{9}{7}$ | $\frac{6}{-11}$ | -4 | 0.5 | $\frac{0}{5}$ | $\frac{-2}{17}$ | $\frac{-4}{-3}$ | $2 \frac{1}{2}$ | 0 | $\frac{3}{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

a. Circle all of the numbers that are rational.
b. Choose one rational number above that is NOT in the form $\frac{m}{n}$ (where $m$ and $n$ are integers, and $n \neq 0$ ). Write it in the form $\frac{m}{n}$.
c. Choose one number above that is NOT rational. Explain why it is not a rational number.

## A COUNTER MODEL

Follow your teacher's directions for (1) - (5).
(1) A positive counter has a value of 1 and looks like $\qquad$ .

Build a value of $\qquad$ and draw it here $\qquad$ .
(2) A negative counter has a value of -1 and looks like $\qquad$ .

Build a value of $\qquad$ and draw it here $\qquad$ .
(3) A zero pair has a value of 0 and looks like $\qquad$ .

Build two zero pairs and draw them here $\qquad$ .This has a value of
in three different ways and draw here.
(4) Use counters to build $\qquad$ b.

c. in three different ways and draw here.
(5) Use counters to build

| a. |  |  | c. |
| :--- | :--- | :--- | :--- |

Build the given values using the given numbers of counters. Then record drawings.

| 6. Use 4 counters. Build and draw a |
| :--- | :--- |
| value of 0. |$\quad$ 7. | Use 8 counters. Build and draw a |
| :--- |
| value of 0. |

12. Record the meanings of zero pair and opposite of a number in My Word Bank.

## PRACTICE 1

1. The combination of one positive and one negative counter is called a $\qquad$ .
2. Describe a zero pair using Mortimer's magic cubes.

Build the given values using the given numbers of counters. Then record drawings.

|  | Value | \# of counters | Drawing |
| :---: | :---: | :---: | :---: |
| 3. | 5 | the least possible |  |
| 4. | -6 | the least possible | - |
| 5. | 0 | 2 |  |
| 6. | 0 | 10 |  |
| 7. | 5 | 7 |  |
| 8. | 5 | more than 7 , but less t |  |
| 9. | -2 |  |  |
| 10. | -2 | more than 2, but less th |  |
| 11. | 6 | ast 7 |  |
| 12. | -1 | more than 7 |  |

Build and draw the following situations.

| 13. Start with a value of 4. | 14.Start with a value of -4. <br> What can you place on your work space <br> What can you place on your work space <br> to change this into a value of zero? |
| :--- | :--- |
| Draw the result. |  |
|  | Draw the result. |

15. Try to represent any odd value with an even number of counters. What do you notice?

## ADDING INTEGERS WITH COUNTERS

Use these sentence frames to help think through integer addition. Do not write in these.

- Begin with a work space that has a value equal to 0 .
- Build
positive/negative
- The plus ( + ) means to add.
- Add $\qquad$ $\frac{\text { positive/negative }}{}$ counter(s).
- The result is $\qquad$ counter(s).

Follow your teacher's directions for (1) - (4). (1) (2)
(3)

Compute each sum. Draw using positive symbols $(+)$ and negative symbols $(-)$.

| 5. | $(7)+(-2)$ | 7. | $(2)+(6)$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

For problems $11-13$, use positive, negative, and zero as choices to finish each sentence below. Use all that apply for each.
11. When adding two positive integers, the result will be $\qquad$ .
12. When adding two negative integers, the result will be $\qquad$ .
13. When adding a positive integer and a negative integer, the result will be $\qquad$ ,
$\qquad$ , or $\qquad$ .

## INTEGER ADDITION RULES

| Description of counters on your workspace | Drawing | Numerical example | Summarizing Shorthand (positive $\rightarrow$ pos) <br> (negative $\rightarrow$ neg) |
| :---: | :---: | :---: | :---: |
| 1. Positive Only |  |  |  |
| Place some positives. Then place more positives. |  | $L^{+}$ | $\text { pos }+ \text { pos is }$ |
| 2. Negative Only |  |  |  |
| Place some negatives. Then place more negatives. |  |  | pos + pos is |
| 3. Positive and Negative |  |  |  |
| a. Place some of each so that the result is positive. |  | $]^{+}$ $\qquad$ | pos + neg is pos when: |
| b. Place some of each so that the result is negative. |  | $+$ $\qquad$ | pos + neg is neg when: |
| c. Place some of each so that the result is zero. |  | $\ldots+$ | pos + neg is 0 when: |

## PRACTICE 2

Without computing, determine whether each sum is positive (pos), negative (neg), or zero (0).


Write a number sentence and describe the change resulting from each action.

| 23. Jenelle earns $\$ 20$, then loses $\$ 20$. | 24. Andres loses 5 yards, then gains 5 <br> yards. |
| :--- | :--- |
| 25. Minh's kite drops 10 ft, then climbs 10 <br> feet. | 26. Avani gets 15 new cards for her <br> collection, then gives away 15 cards. |

## PRACTICE 3

1. Compute the following: $100+100=$ $\qquad$ and $-100+(-100)=$ $\qquad$ .
How is adding two negative numbers the same as adding two positive numbers?

How is it different?
2. Compute the following: $100+(-10)=$ $\qquad$ $-100+10=$

How are these computations related to subtraction?
3. Complete the puzzle below using the given expression. Then find total sums for rows and for columns (exclude the gray numbers). Make sure the sums are equal for the very bottom

4. Devin is a running back on his high school football team. On first down (the first play), he loses 3 yards. On second down (the next play), he gains 17 yards. Where is Devin's team in relation to where they started before first down?

## COUNTERS AND SUBTRACTING INTEGERS

We will use a counter model to generalize the rule for integer subtraction. We will subtract integers using the rule.
[7.NS.1abcd, 7.SP.7b, 7.SP.8a; SMP1, 2, 3, 4, 5, 6, 7, 8]

## GETTING STARTED

1. Using at least 6 , but no more than 12 counters, draw a value of -2 in two different ways.
2. How many ways are there to build any given integer with counters?


Compute each sum. Use positive symbols (+) and negative symbols (-) if desired.
3. $-6+(-6)$
5. $5+(-3)$

Compute each sum without using counters or

drawings. Show work if not done mentally.
8. $27+(-59)$
9. $-600+(-300)$
10. Think about Mortimer's magic cubes. Regardless of the temperature of the liquid, what happens to it if we remove some cold cubes?
b. what happens if instead we remove some hot cubes?
11. Abner thinks that -6 is greater than -3 . What mistake is he making?

## SUBTRACTING INTEGERS WITH COUNTERS 1

Use these sentence frames to help think through integer subtraction. Do not write in these.

- Begin with a work space that has a value equal to 0 .
- Build
$\overline{\text { positive/negative }}$
- The minus ( - ) means to subtract.
- Subtract $\qquad$ $\overline{\text { positive/negative }}$
- The result is $\qquad$ counter(s).

Follow your teacher's directions for (1) - (3). (1)


Compute each difference. Draw using positive symbols (+) and negative symbols (-).

| 4. $6-3$ |  |  | 6. | $-7-(-1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

10. Mateo thinks that "when you subtract, the result is less than what you started with." Look at problems $1-9$. Put stars by examples that illustrate Mateo is not correct.

## SUBTRACTING INTEGERS WITH COUNTERS 2

Follow your teacher's directions for (1) - (4).

13. Put a star next to all the problems above where the result (difference) is greater than number you started with (minuend). Then look at all the problems where you put stars in this lesson. What do you notice about the number that is being subtracted (subtrahend) EVERY time?

## THE SUBTRACTION RULE

Compute. Show ACTIONS using positive symbols (+) and negative symbols (-).

| 1a. | $3-(1)$ | 1b. | $3+(-1)$ |
| :--- | :--- | :--- | :--- |
| 2a. | $-6-(-4)$ | 2b. | $-6+(4)$ |
| 3a. | $3-(-1)$ | $3 b$. | $3+1$ |
| 4a. | $-5-(-6)$ | 4 b. |  |
| 5a. | $-5-2+6$ |  |  |

Compare parts (a) and (b) for problems 1-5
6. How are the actions for (a) different than the actions for (b)?
7. These examples show that subtracting a number gives the same result as ...
8. Generalize the subtraction rule for any numbers $m$ and $n$.

| Symbols: | $m-n=m+\ldots$ | $m-(-n)=m+\ldots$ |
| :--- | :---: | :---: |
|  | $m$ minus $n$ is equal to | $m$ minus the opposite of $n$ is equal to |
| Words: |  |  |
| Example: |  |  |

Complete each statement.

| 9. | $3-2=3+$ | 10. | $-3-2=-3+$ | 11. | $3-(-2)=3+$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12. | $5-(-7)=5+$ | 13. | $5+7=5-$ | 14. $\quad 6+8=6-$ |  |

## PRACTICE 4

1. Rewrite $7-(-3)$ as an equivalent addition expression using the subtraction rule. Which is easier for you to compute, the addition or subtraction expression?
2. Circle all expressions that are equivalent to $5-(-7)$.

$$
-5-7 \quad 5-7
$$

$$
5+7
$$

Rewrite each subtraction expression as an equivalent addition expression. Then compute.

| 3. | $17-24$ | 4. | $-56-18$ |
| :--- | :--- | :--- | :--- |
| 6. | $-19-(-44)$ | 7. | $-11-37$ |


9. On a cold winter afternoon in Minnesota, the temperature was $4^{\circ}$ Fahrenheit. By evening the temperature had dropped $11^{\circ}$. What was the evening temperature? Write as a subtraction expression and its equivalent addition expression before answering the question.
10. Complete the puzzle below using the given expression. Then find total sums for rows and for columns (exclude the gray numbers). Make sure the sums are equal for the very bottom row and far right column.


## A ZERO-SUM GAME

1. Choose three numbers (two positive and one negative) whose sum is 0 . Record them in Spinner 1 in any way you like.
2. Choose three numbers (two negative and one positive) whose sum is 0 . Record them in Spinner 2 in any way you like.
3. In this game, one turn is spinning both spinners once and finding the sum. If the sum is greater than 0, you win. If the sum is less than zero, you lose. For your chosen numbers, explain whether or not this is a fair game where $P($ winning $)=P($ losing $)=\frac{1}{2}$
4. Using a paperclip as a spinner, find the sum for 20 trials and record. Did the results turn out as you expected? Explain.
5. Change the positions of the numbers you placed in Spinner 1 and/or Spinner 2. Is the probability of winning still the same? Do you have a better chance of winning?


## ADDING AND SUBTRACTING RATIONAL NUMBERS

We will use number lines to extend the addition and subtraction rules for integers to the set of rational numbers.
[7.NS.1abcd; SMP1, 2, 5, 6, 7, 8]

## GETTING STARTED

Use appropriate words to make the following sentences true.

1. As we move from left to right on the number line, numbers have
2. As we move from right to left on the number line, numbers have $\qquad$ value.

This arrow begins at 0 and ends at 5. It represents the number 5 . Draw arrows to represent each of the following numbers on the number lines below.

3. -5

4. 4.5

5.


6. A number is 2 units from 3 on the number line. Fill in the blanks in the addition equations below to represent the two possible equations for this number. Use a number line above if helpful.

$$
3+\square=\square
$$

$$
3+\square=\square
$$

How do the two numbers added to 3 compare?

Follow your teacher's directions for (1) - (6).

13. Look at problems 1-12 above. Do the addition rules we learned in a previous lesson hold for these problems? Do you think that these rules hold for all rational number addition?

## PRACTICE 5

Predict each sum. Then compute using arrows. Label tick marks appropriately.

4.3 Adding and Subtracting Rational Numbers NUMBER LINE SUBTRACTION

Follow your teacher's directions for (1) - (12).

13. Look at problems $1-12$ above. Does the subtraction rule we learned in a previous lesson hold for these problems? Do you think that this rule holds for all rational number subtraction?

## PRACTICE 6

Predict each difference. Then compute using arrows. Label tick marks appropriately.


## PRACTICE 7

Compute using any method. If mental math is used, write MM. Otherwise show all work.


## PRACTICE 8

Compute using any method. If mental math is used, write MM. Otherwise show all work.


Rational Number Addition and Subtraction
EXPLORING DIFFERENCE AND DISTANCE ON THE NUMBER LINE
Use the number line below as needed for problems $1-6$ to count the distance between the given points. Recall that distances are always represented by nonnegative numbers.


|  | Points on a line | Distance counted between points | Difference between points | Absolute value of the differences |
| :---: | :---: | :---: | :---: | :---: |
| 1. | 5 and 8 |  | $8-5=$ |  |
| 2. | 0 and 4 |  |  |  |
| 3. | -7 and -5 |  |  |  |
| 4. | -4 and 0 |  |  |  |
| 5. | 2 and -9 |  |  |  |
| 6. | 3 and |  |  |  |

7. The distance between two points on a number line is the $\qquad$ of their difference.

For the given pairs of points on a line below, find the distance between them without counting.

| 8. 25 and 105 | $9 . \quad-30$ and -70 | $10 . \quad 50$ and -50 |
| :--- | :--- | :--- | :--- |

11. A bird is flying 50 meters above sea level. A dolphin is swimming 35 meters below sea level. What is the vertical distance between the bird and the dolphin?

## PRACTICE 9: EXTEND YOUR THINKING

1. A rancher is digging a well. Ground level has an elevation of zero. First write an expression to describe his actions. Then solve the problem.
From ground level he digs down 13 feet, and then stops for the day. Overnight wind blew 2 feet of dirt back into the hole. The second day he digs another 9 feet. The third day he decides the hole is now too deep, and fills in 6 feet of dirt. What is the elevation at the bottom of the well after his work is complete?

Recall that properties like the commutative and associative properties of addition allow us to add numbers in different orders. Use these properties to make the following calculations easier. Describe your process.

2. $37+(-21)+(-37)$


Insert plus $(+)$ and minus $(-)$ signs to make the equations true.

| 6. | $-3.8 \square(-4.2) \square 6.4=-6$ | 7. | $0.14 \square 0.86 \square(-0.05)=-0.77$ |
| :--- | :--- | :--- | :--- |
| 8. | $-\frac{1}{2} \square\left(-\frac{1}{3}\right) \square \frac{5}{6}=-\frac{5}{3}$ | 9. | $-2 \frac{1}{4} \square 4 \frac{1}{6} \square\left(-3 \frac{1}{2}\right)=5 \frac{5}{12}$ |

## REVIEW

## COMPARING ADDITION AND SUBTRACTION

Complete the tables below using patterns.

1. | Expression |  | Sum |  |
| :---: | :---: | :---: | :---: | :---: |
| 5 | + | $\left(\_\right)$ |  |
| 5 | + | $(-)$ |  |
| 5 | + | $(1)$ |  |
| 5 | + | $(0)$ | 5 |
| 5 | + | $(-1)$ | 4 |
| 5 | + | $(-2)$ |  |
| 5 | + | $(-)$ |  |
| 5 | + | $(-)$ |  |
| 5 | + | $(-)$ |  |
| 5 | + | $(-)$ |  |

$2 .$| Expression |  |  | Difference |
| :---: | :---: | :---: | :---: |
| 5 | - | $(-)$ |  |
| 5 | - | $(-)$ |  |
| 5 | - | $(-1)$ |  |
| 5 | - | $(0)$ | 5 |
| 5 | - | $(1)$ | 4 |
| 5 | - | $(2)$ |  |
| 5 | - | $(3)$ |  |
| 5 | - | $\left(\_\right)$ |  |
| 5 | - | $\left(\_\right)$ |  |
| 5 | - | $\left(\_\right)$ |  |

Complete the problems below based on the results (sums or differences) in the tables above. 3. Under what circumstances are the results less than 5 ?

Adding a $\qquad$ number or subtracting a $\qquad$ number.
4. Under what circumstances are the results greater than $\mathbf{5}$ ?

Adding a $\qquad$ number or subtracting a $\qquad$ number.
5. What two expressions have a result of 4 ? $\qquad$ and $\qquad$
6. What two expressions have a result of 8 ? $\qquad$ and $\qquad$
7. Subtracting 6 from a number gives the same result as adding $\qquad$ to it.
8. Subtracting -2 from a number gives the same result as adding $\qquad$ to it.
9. Write the related addition expression for each subtraction expression below.
a. $-5-1$
b. $\quad-5-(-1)$
c. $0-(-1)$

## INTEGER BATTLE

## You will need:

- 2 or more players
- R4-2ab Integer Cards (or playing cards with picture cards removed - for black and red cards, define one color as positive and the other as negative)

Integer Battle is like the classic card game War. It may be played one-on-one or two-on-two.

## Addition version

- Shuffle all the cards and deal them out equally to each player/team.
- Both players/teams place two cards from the top of their stack in front of them.
- Each team adds the values on both pairs of cards. The player/team with the greater sum wins, and that player/team collects all fou
- When a player/team runs out of cards, and there are still collected cards in their pile, they shuffle and reuse those cards like before.
- When a player/team completely runs out team is declared the winner.


## Subtraction version

- The game is played exactly like the addition
of cards, and have none left at all, the other

on version, with one exception. When two cards ond card placed down is subtracted from the first card placed down. Therefore, this version requires that players are careful to note which card is placed first, and which is placed second.

1. Play the addition version of Integer Battle. Record two winning hands:

2. Play the subtraction version of Integer Battle. Record two winning hands:
$\qquad$ $=$ $\qquad$ is greater than $\qquad$ - $\qquad$ $=$ $\qquad$
$2^{\text {nd }}$ $\qquad$ - $\qquad$ $=$ $\qquad$ is greater than $\qquad$ $-$ $\qquad$ $=$ $\qquad$

# BIG SQUARE PUZZLES: RATIONAL NUMBER ADDITION AND SUBTRACTION 

1. Complete the Big Square Puzzle(s) provided by your teacher.
2. Describe a strategy you use to complete the puzzle(s).

## POSTER PROBLEMS: RATIONAL NUMBER ADDITION AND SUBTRACTION

Part 1: Your teacher will divide you into groups.

- Identify members of your group as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D.
- Each group will start at a numbered poster. Our group start poster is $\qquad$ .
- Each group will have a different colored marker. Our group marker is

Part 2: Do the problems on the posters by following your teacher's directions. Show all computations neatly on the posters.

| ROW | Poster 1 (or 5) | Poster 2 (or 6) | Poster 3 (or 7) | Poster 4 (or 8) |
| :---: | :---: | :---: | :---: | :---: |
| I | $-3 \frac{1}{5}+4 \frac{3}{10}$ | $-\frac{2}{3}+\frac{5}{6}$ | $-2.8+4.35$ | $-0.064+0.54$ |
|  |  | $-3 \frac{1}{2}$ | $-\frac{3}{4}$ | -5.6 |
| II | $-\frac{9}{10}$ | $\frac{1}{2}$ | -0.51 |  |
| III | $-4 \frac{2}{5}$ | $-\frac{1}{3}$ | -10.1 | 0.056 |
| IV |  |  | -0.29 |  |

A. Copy and compute row I.
B. Add the number in row II to the result of row I.
C. Subtract the number in row III from the result of row II.
D. Subtract the number in row IV from the result of row III.

Part 3: Return to your original poster. Verify computations and correct errors if needed.

## VOCABULARY REVIEW



## Across

2 set of numbers that includes natural numbers and zero

3 $-(-4)$ is the ___ of -4 (2 words)
$6 \quad \ldots-3,-2,-1,0,1,2 \ldots$
8 one positive counter and one negative counter (two words)


## Down

1 a number greater than zero

4 the result of subtraction

5 the result of addition

7 a number that can be written as $\frac{a}{b}$ ( $a$ and $b$ are integers, $b \neq 0$ )

## SPIRAL REVIEW

1. Math Path Fluency Challenge: Use what you know about decimal operations to find the correct path from Start to Finish.

2. Complete table.

|  | Shirt <br> $\mathbf{2 0 \%}$ <br> discount | Pants <br> $\mathbf{1 5 \%}$ <br> discount | Shoes <br> $\mathbf{3 5 \%}$ <br> discount | Socks <br> 10\% <br> discount | Jacket <br> 50\% <br> discount |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Original <br> Price | $\$ 17$ |  | $\$ 25$ |  |  |
| Amount of <br> discount |  | $\$ 6$ |  | $\$ 1$ |  |
| New price |  |  |  |  | $\$ 25$ |

[^0]
## SPIRAL REVIEW

## Continued

3. Compute. (Remember: first simplify expressions in grouping symbols, then calculate exponents, then multiply and divide left to right, and finally add and subtract left to right).

4. JM buys $\$ 58.20$ worth of schools supplies to donate to the local after school program. JM receives a 35\% discount on the purchase.
a. What is the discounted price of the school supplies?
b. JM pays $9.25 \%$ tax on the discounted price. What is the total that JM spent?

## REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before.
3. Mathematical Practices. Suppose you were asked to explain how to add integers to a younger student. What model or strategy would you use, and why? Give an example and explain in words [SMP3, 5]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

4. Making Connections. Why do you think that some students may have a misconception that subtraction makes things smaller? Give an example that might correct this misconception.

## STUDENT RESOURCES

| Word or Phrase | Definition |
| :---: | :---: |
| absolute value | The absolute value $\|x\|$ of a number $x$ is the distance from $x$ to 0 on the number line. <br> $\|2\|=2$ and $\|-2\|=2$, because both 2 and -2 are 2 units from 0 on the number line. |
| addend | See sum. |
| additive identity property | The additive identity property states that $a+0=0+a=a$ for any number $a$. In other words, the sum of a number and 0 is the number. <br> We say that 0 is an additive identity. The additive identity property is sometimes called the addition property of zero. $3+0=3,0+7=7,-5+0=-5=0+(-5)$ |
| additive inverse | The additive inverse of $a$ is the number $b$ such that $a+b=b+a=0$. The additive inverse of $a$ is denoted by $-a$. <br> -4 is the additive inverse of 4 . |
| additive inverse property | The additive inverse property states that $a+(-a)=0$ for any number $a$. In other words, the sum of a number and its opposite is 0 . The number $-a$ is the additive inverse of $a$. $3+(-3)=0,-5+5=0$ |
| difference | In a subtraction probien, the difference is the result of subtraction. The minuend is the number from which another number is being subtracted, and the subtrahend is the number that is being subtracted. $8$ <br> minuend subtrahend difference |
| integers | The integers are the whole numbers and their opposites. They are the numbers $0,1,2$, $3, \ldots$ and $-1,-2,-3, \ldots$. |
| minuend | See difference. |
| egative numbers | Negative numbers are numbers that are less than zero, written $a<0$. The negative numbers are the numbers to the left of 0 on a horizontal number line, or below zero on a vertical number line. <br> The numbers $-2,-4.76$, and $-\frac{1}{4}$ are negative. <br> The numbers 2 and 5.3 , and 0 are NOT negative. |


| Word or Phrase | Definition |
| :---: | :---: |
| opposite of a number | The opposite of a number $n$, written $-n$, is its additive inverse. Algebraically, the sum of a number and its opposite is zero Geometrically, the opposite of a number is the number on the other side of zero at the same distance from zero. <br> The opposite of 1 is -1 , because $1+(-1)=-1+1=0$. The opposite of -1 is $-(-1)=1$. <br> Thus, the opposite of a number does not have to be negative. |
| positive numbers | Positive numbers are numbers numbers are the numbers to the number line. <br> hat are greater than zero, written $a>0$. The positive right of 0 on a number line, or above zero on a vertical <br> The numbers $3,2.6$, and $\frac{3}{7}$ are positive. <br> The numbers $-3,-2.6,-\frac{3}{7}$, and 0 are NOT positive. |
| rational numbers | Rational number are numbers expressible in the form $\frac{m}{n}$, where $m$ and $n$ are integers, and $n \neq 0$. <br> $\frac{3}{5}$ is rational because it is a quotient of integers. <br> $2 \frac{1}{3}$ and 0.7 are rational numbers because they can be expressed as quotients of integers, namely $\frac{7}{3}$ and $\frac{7}{10}$, respectively. <br> $\sqrt{2}$ and $\pi$ are NOT rational numbers. They cannot be expressed as a quotient of integers. |
| subtrahend | See difference. |
| sum | A sum is the result of addition. In an addition problem, the numbers to be added are addends. <br> $+5$ 12 <br> adde addend addend sum |
| whole numbers | The whole numbers are the natural numbers together with 0 . They are the numbers $0,1,2,3, \ldots$. |
|  | In the counter model, a positive and a negative counter together form a zero pair. <br> Let + represent a positive counter and <br> let - represent a negative counter. <br> Then the figure to the right is an example of a collection of (three) zero pairs. |

## Mr. Mortimer's Magic Cubes

Mr. Mortimer discovered an amazing way to control the temperature of liquid. He invented magic hot and cold cubes to change the liquid's temperature. These magic cubes never melt or change in any way. For example, ice cubes melt, but magic cold cubes do not.

Hot Cubes (the basies):

- If you add 1 hot cube to a liquid, the liquid heats up by 1 degree.
- If you remove 1 hot cube from the liquid, the liquid cools down by 1 degree.


## Cold Cubes (the basics):

- If you add 1 cold cube to the liquid, the liquid cools down by 1 degree.
- If you remove 1 cold cube from the liquid, the liquid heats up by 1 degree.


Here are a few examples to show temperature change using magic hot and cold cubes.


## Representing the Additive Inverse



Example: If $a=-3$, then $-a=3$
The statement, "If $a$ is equal to minus 3 , then minus $a$ is equal to 3 " can be read:

- If $a$ is equal to the opposite of 3 , then the opposite of $a$ is equal to 3 . When we add -3 and 3 , the result is 0 .



## A Counter Model

This counter model is used to model integers.
Let + represent a positive counter with a value of positive 1
Let - represent a negative counter with a value of negative 1.
A zero pair is a pair with one positive counter and one negative counter. Both representations below have a value of zero.
Both representations below have a value of zero.

## Counter Addition Sentence Frames



Rules for Addition of Integers
Rule 1: When the addends have the same sign, add the absolute values. Use the original sign in the answer.
Rule 2: When the addends have different signs, subtract the absolute values. Use the sign of the addend with the greatest absolute value in the answer.


## Counter Subtraction Sentence Frames



## Addition and Subtraction on a Number Line

We can use arrows to represent addition and subtraction on a number line. For adding any two numbers:

- The absolute value of a number is represented by the arrow length.
- The first arrow begins at zero. If it's representing a positive number, the arrow points to the right. If it's representing a negative number, the arrow points to the left.
- If the second number is positive, the arrow points right. If the second number is negative, the arrow points left.
- The sum is represented by the end (tip) position $(2)+(3)=5$

$(2)+(-3)=-1$


For subtracting any two numbers, remember that any minus sign signals doing the "opposite:"

- The absolute value of a number is represented by the arrow length.
- The first arrow begins at zero. If it represents a positive number, the arrow points to the right. If it represents a negative number, the arrow points to the left.
- If the second number is positive, move the opposite of right (LEFT). If the second number is negative, move the opposite of left (RIGHT).
- The difference is represented by the end (tip) position of the second arrow.

Compare the subtraction problems below to the addition problems above. Notice that the first numbers and arrows are all identical to those above. Notice that the numbers subtracted are identical as well, and so the second arrows all point in the opposite direction.


## COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT

| 7.NS.A | Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. |
| :---: | :---: |
| 7.NS. 1 | Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. <br> Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. <br> Understand $p+q$ as the number located a distance $\|q\|$ from $p$, in the positive or negative direction depending upon whether $q$ is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. <br> Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. <br> Apply properties of operations as strategies to add and subtract rational numbers. |
| 7.SP.C | Investigate chance processes and develop, use, and evaluate probability models. |
| 7.SP. 7 | Develop a probability model and use it to find probabilities of events. <br> Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy: Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? |
| $\text { 7.SP. } 8$ | Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation: <br> Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. |

## STANDARDS FOR MATHEMATICAL PRACTICE

SMP1 Make sense of problems and persevere in solving them.
SMP2 Reason abstractly and quantitatively.
SMP3 Construct viable arguments and critique the reasoning of others.
SMP4 Model with mathematics.
SMP5 Use appropriate tools strategically.
SMP6 Attend to precision.
SMP7 Look for and make use of structure.
SMP8 Look for and express regularity in repeated reasoning.


[^0]:    MathLinks: Grade 7 (2 ${ }^{\text {nd }}$ ed.) ©CMAT

