\qquad Date \qquad

SAMPLING		
	-	
	Monitor Your Progress	Page
My Word Bank		0
10.0 Opening Problem: Screen Time		1
$\begin{array}{ll}10.1 \text { Introduction to Sampling } \\ & \text { Differentiate between theoretical probability and experimental } \\ \text { probability } \\ & \text { Identify populations and samples } \\ & \text { Use random sampling to make valid Inferences about } \\ \text { populations }\end{array}$	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	2
10.2 Comparing Samples - Use measures of center and spread to compare numerical data sets - Use dot and box plots to visually compare data sets	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	7
Use a mathematical model with random sampling and proportional reasoning to estimate an entire population Use data displays and measures of center and spread to make inferences about populations	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	13
Review		17
Student Resources		25

Parent (or Guardian) signature \qquad
MathLinks: Grade 7 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 10: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.

| measure of center |
| :---: | :---: | :---: |
| mean, median, mode |

Follow your teacher's directions.

(2)
(3)

INTRODUCTION TO SAMPLING

We will use examples to explore the difference between theoretical probability and experimental probability. We will learn about populations and samples, and we will explore biased and random sampling.
[7.SP.1, 7.SP.5, 7.SP.7a; SMP1, 3, 4, 6, 7]

GETTING STARTED

Recall that a statistical question is a question where numerical data that has potential for variability can be collected and analyzed for the purpose of answering the question.

Example: "How much TV do students in my class watch onaverage?" Non-example: "How many hours of TV did you watch last week?"

For each problem $1-5$, put a check next to the one that is a statistical question.

1. How tall are you?

How tall is the average student at your school?
2. How much time per night do you spend on homework during a typical week?

What did you have for homework last night?
3. How many texts did you send yesterday? How many texts does the average 13 -year old send in a day?
4. What is the high temperature for today?

What is the average high temperature for the city for today's date?
5. What is your favorite after-school club?

What is the favorite after-school club at your school?
6. Suppose you want to know what is considered the favorite after-school club at your school. Select the methods that you think will best let you know.
a. Asking the person sitting next to you.
b. Asking all of the boys in your school.
c. Publishing a survey in the school paper.
e. Asking each member of the math club.
d. Asking all of the teachers in your school.
f. Asking every fifth person who enters the school.

REVISITING PROBABILITY

Follow your teacher's directions for (1) - (3).
(1)
(2)

Trial	Result	Cumulative Totals for Blue			Prediction
		Total Drawn	As a fraction	As a percent	\# of blue in bag
2					
2					
3					
4					
5					
6					
7					
8					
9					
10					
(3)					

4. Determine if each situation below describes a theoretical probability or experimental probability situation.
a. The XYZ insurance company determines that a 25 -year-old male must pay a higher automobile insurance premium than his 56-year-old mother.
b. You have a full deck of shuffled playing cards and predict that you have a 25% chance of drawing a card that is clubs.

POPULATIONS AND SAMPLING

Follow your teacher's directions for (1).
(1)

2. Consider the question, What is the likelihood that a U.S. high school athlete gets a concussion?" Explain why each sample is not random (is biased) regarding this question.

SAMPLING SORT

1. Your group will be given a set of cards.

- Read one card at a time and discuss what are the population and sample
- Determine whether the sample is biased or random
- Record each card letter in the appropriate column

2. Choose three of the biased sampling examples from above. Explain why they are biased and suggest a way to get a ,ore random sample.

3. What is the same about every sample?

4. Why do we want to avoid choosing a biased sample for statistical analysis?
5. Record the meanings of population and sample in My Word Bank.

PRACTICE 1

1. For which populations would taking a sample be more efficient than surveying the entire population?
a. Determining the average score on a class test.
b. Determining the favorite ice cream flavor in Vermont.
c. Determining the most common injury cared for in an emergency room.
d. Determining your family's favorite fast-food restaurant.
2. You want to estimate the number of students who walk to school. Which sample is most representative of the school population?
a. The first 10 people you see during passing period.
b. Selecting 50 students randomly by ID numbers from each grade.
c. Asking every other student in the lunch line during seventh grade lunch time.
3. The student council wants to know which assembly students liked best this year. Each student council member asked 10 students to vote.
a. How might the council choose the students so that it is representative of the school's population?
b. How might the council choose the students so that it does not represent the entire school population?
4. In a poll taken in Mr. Fernandez's math class, 70% of the students said he was their favorite teacher. The school newspaper wants to run an article stating that Mr. Fernandez is the favorite math teacher in the school. Explain why this is not a valid conclusion, and suggest a better way to determine who is the favorite math teacher at the school.
5. Refer back to the opening problem, Screen Time.
a. What is the population being considered?
b. Why would it be inefficient to survey the entire population (like we do for the Census)?
c. Suggest a method that the news organization could use to appropriately sample the population.

COMPARING SAMPLES

We will use statistical measures and data displays to compare samples.
[7.EE.3, 7.RP.3, 7.SP.1, 7.SP.2, 7.SP.3, 7.SP.4; SMP1, 2, 4, 5, 6, 7]

GETTING STARTED

Below is a random sample of 10 teens' estimated daily screen times rounded to the nearest full hour.

Liam	Mia	Xander	Noah	Emma	Ava	William	Olivia	Quentin	Evelyn
5	6	9	7	10	7	4	10	7	5

1. Rewrite the times in order from least to greatest.

Match the letters A - I to each description below. Then write the values of each measure based upon the screen time sample above. Refer to Student Resources as needed.

A. mean		B. $1^{\text {st }}$ Quartile $\left(Q_{1}\right)$	C. number of observations (n)	
D. range		E. median (med $=Q_{2}$)	F. five-number summary	
G. minimum (min)		H. $3^{\text {rd }}$ Quartil	I. interquartile range (IQR)	
A - I		escription		Value(s)
2.	The number of pieces of data collected.			
3.	The middle number, when the observations are ordered from least to greatest.			
4. The arithmetic average.				
5. The lowest number of times watch				
	The difference between the highest and lowest number of times watching.			
	The middle value of the lower half of the data set.			
8.	The middle value of the upper half of the data set.			
9.	The following five data points: (min, $Q_{1,}$ med, Q_{3}, max).			
10.	The difference between Q_{3} and Q_{1}.			

GETTING STARTED

Continued
11. Make a line plot and box-plot of the screen time data.
Line Plot

12. The mean number of times watching a screen: is \qquad Compute the mean absolute deviation (MAD) for the screen time sampling. See Student Resources if needed.

13. Name the measure of spread associated with each measure of center.

Measure of center: mean
Measure of center: median

Measure of spread: \qquad
Measure of spread: \qquad

MATH SCORE SAMPLES

All seventh-grade students in Shermer School District took math benchmark assessments. Here are samples of student scores selected randomly for two of the middle schools.

1. Rewrite the lists of scores in order from least to greatest.

2. Based on the data above, what is the typical score on the benchmark assessment for each school? Explain.

13. Record the meanings of measure of center and measure of spread in My Word Bank.

MATH SCORE SAMPLES

Continued

Use the test score data to create the following data displays.
14. Create dot plots for each sample.

Frequency at Burkhart
 121314151617181920212223
 121314151617181920212223

Using the displays above, circle the best answer for each of the following statements.
16. The center of the Burkhart distribution is \qquad the center of the Starke distribution. greater than
\qquad the variability of the Starke distribution.
15. Create box plots for each sample.

less than
18. Three weeks later, the district reported actual mean test scores for each school. Find each school's sample mean error, called, percent error, by using this formula.

	Percent error $=\left\|\begin{array}{c}\text { actual-estimate } \\ \text { actual }\end{array}\right\|$, written as a percent		
School	Actual Mean	Sample Mean (estimate)	Percent Error
Burkhart	15		
Starke	16		

19. Which school's data sample represented their seventh-grade school population better? How do you know?

PRACTICE 2

Below are the heights (in inches) of athletes from two sports at UCLA in 2014. They were selected randomly from the rosters and organized in order from least to greatest.

73	73	75	78

Women's gymnastics team (G)

61	61	62	62	63	63

Use the displays above to answer the following questions.

3. The \qquad team has the greater measure of center. What does this tell you about the heights of this team as compared to the heights of the other team?
4. The \qquad team has the lesser measure of spread. What does this tell you about the heights of this team as compared to the heights on the other team?
5. What can you conclude about the typical height of a gymnast versus the typical height of a basketball player from these teams?
6. Another gymnast joined the team and is $6^{\prime} 4$. How would the new gymnast's height affect the center and variability of team data distributions?

PRACTICE 3

Rachel selected small random samples of housing prices for Texas (TX) and California (CA). The data is in the table below.

	Cost (in				dollars; for example, 100 means $\$ 100,000$)					
Texas	190	178	235	298	109	275	123	280	122	200
California	320	296	502	277	548	665	410	750		

Rachel used an online statistics calculator to compute the mean and the MAD for each data set, but she didn't organize her work or label It. Here are the six numbers she wrote down.

$$
\begin{array}{lll}
471,000 & 10 & 56.8
\end{array}
$$

1. Use the data samples and Rachel's numbers to complete the table below.

number of observations	Texas	California
Mean		
MAD		

2. On average, which state do youthink has more expensive homes? By how much?
3. Which state do you think has more consistent housing prices? Explain why you think this.
4. The variability of the CA sample is about \qquad times the variability of the TX sample.
5. According to McMath's Realty, the average house in Texas costs $\$ 195,000$ and the average house in California costs $\$ 445,000$. Find each data sample's error as a percent.

Average cost in TX percent error: \qquad Average cost in CA percent error: \qquad
6. The percent error of the CA sample is about \qquad times greater than the TX sample.
7. Which sample is closer to the actual average house cost in the state? How do you know?
8. Record the meaning of percent error in My Word Bank.

FISH IN A LAKE

We will do a sampling experiment to estimate the fish population in a lake. We will make inferences about fish populations using data displays and measures of center and spread.
[7.EE.3, 7.RP.3, 7.SP.1, 7.SP.2, 7.SP.4, 7.SP.8c, SMP1, 2, 3, 4, 5, 6, 7, 8]

GETTING STARTED
Solve each equation using any method.
Solve each equation using any method.

$1 . \frac{2}{3}=\frac{x}{27}$	2.	
3.		

ESTIMATING FISH POPULATIONS

Follow your teacher's directions for (1) - (3).
(1) - (2)

Total number of marked fish:			Marked fish sample:		
Total fish population:			Total fish sample:		
(3)					
	Sample 1	Sample 2	Sample 3	Sample 4 Sample 5	Sample 6
$S_{\text {marked }}$					
$S_{\text {total }}$					
$\boldsymbol{P}_{\text {marked }}$					

4. Create and solve equations to estimate the number of fish in the lake for each sample.

5. Based on your experiment, estimate the number of fish in the population. \qquad
Explain how you arrived at this estimate.
6. Count all of the fish. The actual number of fish in the population is \qquad .
7. Find the error in your estimate as a percent of the actual population. \qquad

PRACTICE 4: FISH LENGTHS

1. Record the meaning of simulation in My Word Bank.

In Estimating Fish Populations, suppose that when fish were marked, they were also measured. Here are fish lengths in centimeters from two different random samples from two different lakes:

$$
\text { Sample A: 75, 32, 38, 42, 47, 68, 51, 51, 61, 31, 51, } 62
$$

Sample B: 49, 45, 51, 49,
$63,56,51,48,52,42,51,52$
2. Rewrite each list in order from least to greatest.

3. Calculate statistics for the two data sets.

Statistic	Sample A		Sample B
number of observations			
minimum			
maximum			
range			
mean			
median			
mode			
five-number summary			
interquartile range (IQR)			
mean absolute deviation (MAD), rounded to the hundredths			

PRACTICE 4: FISH LENGTHS
 Continued

4. Compare the measures of center for each sample. What do you notice?
5. Which sample had more consistent lengths of fish? Justify with the data above.
6. Create box plots from the data on the previous page for Sample A and Sample B using the scale provided below.

Sample A:

Sample B:

8. About what percent of the data is included between Q_{1} and Q_{3} ?
9. What do the box plot and interquartile range tell us about fish lengths in the lakes?

10. What is a statistic NOT included in the box plot that you think is relevant or useful? Explain.

REVIEW

POSTER PROBLEMS: SAMPLING

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D
- Each group will start at a numbered poster. Our group start poster is
- Each group will have a different colored marker. Our group marker is

Part 2: Follow your teacher's directions. Complete problems on the posters.

$\begin{aligned} & \text { Poster } 1 \\ & \text { (or 5) } \end{aligned}$	Two stores sold the following shoe sizes during the last hour: Store $X: 9,7,8,8,10,8,6,5,9,8$ Store Y: 9, 6, 7, 6, 8, 6, 7, 5, 6, 8
$\begin{aligned} & \text { Poster } 2 \\ & \text { (or 6) } \end{aligned}$	Housing prices (in thousands) for the most recent sales in two housing areas of Mathville: Area X: \$350, \$400, \$800, \$370, \$425, \$320, \$350, \$360, \$365, \$300 Area Y: \$475, \$470, \$460, \$375, \$500, \$450, \$650, \$480, \$500, \$410
$\begin{aligned} & \text { Poster } 3 \\ & \text { (or } 7 \text {) } \end{aligned}$	Teens were surveyed on the number of hours per week they spend on their phone from two different math classes: Class X: 63, 50, 40, 15, 35, 45, 54, 29, 25, 37 Class Y: 28, 35, 30, 42, 40, 32, 25, 28, 21, 29

Poster $\mathbf{4}$ (or 8)	The number of family pets from two random samples: Sample $\mathrm{X}: 5,3,2,0,1,1,4,5,3,1,0,2,1,0,2$ Sample Y: 3, 1,2,0,1,2,7,2,2,3,0,1,0,2,4
A. Copy the data in numerical order and determine the mean for each data set.	
B. Find the five-number summary for each data set.	
C. Make an appropriate data display for each data set. Be sure to label each graph.	
D. Write a statistical question you could ask that would compare the data sets.	

Part 3:

Return to your seats with your original poster. Work with your group. Answer the statistical question from problem D.

MATCH AND COMPARE SORT: SAMPLING

1. Individually, match words with descriptions. Record results.

Card set \triangle			Card set \bigcirc			
Card number	word	Card letter	Card number	word	Card letter	
I			I			
II			II			
III			III			
IV			IV			

2. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

3. Partners, choose another pair of numbered matched cards and discuss the attributes that are the same and those that are different.

WOULD YOU RATHER?

1. Would your teacher rather have the class data from an exam look like box plot A or B ? Explain. The five-number-summaries are clearly marked for each.

2. Would you rather have Kim's or Sunny's screen watching habits? Explain.

Sunny's Screen Time for January

VOCABULARY REVIEW

Across

4 a measure that includes the difference between an actual measure and its estimate

7 an entire group of people or objects
9 First quarter of a sample (abbreviation)
10 measure of spread associated with the mean (abbreviation)

11 another word for variability

12 sample where every person does not have an equal chance to be selected

Down

1 measure of center associated with IQR

2 middle 50\% of a data set
3 plot showing the five-number summary
5 Mean, median, and mode are measures of \qquad .

6 sample where every object has equal chance to be selected

8 Another name for dot plot (two words)

13 a measure of center

SPIRAL REVIEW

1. Math Path Fluency Challenge: Use what you know about solving equations to find the correct path from Start to Finish.

START

Complete the table below. Round to the nearest cent.

	1%	5%	4%	120%	0.5%
	$\$ 1.50$				
		$\$ 4.80$			
$\$ 28.25$					

SPIRAL REVIEW

Continued

3. Find the value of p and the measure of each angle in the diagram below.

4. Donavon wants to build a kicker ramp based on the sketch below. Donavon wants to use a scale of $1 \mathrm{~cm}: 0.75 \mathrm{ft}$.
a. What is the shape of the kicker ramp?
b. Measure the drawing below and label side lengths.
c. Write the actual dimensions of the ramp.
d. Find the amount of wood (round up to the nearest square foot) that will be needed to build the entire ramp (with five faces).

SPIRAL REVIEW

Continued

5. JP has $4 \frac{3}{8}$ yards of wire. He cuts it into pieces that are each $\frac{1}{4}$ yard and uses each piece to tie up plants in the garden.
a. How many pieces does he cut?
b. How much wire will be left over?
c. How much of a piece of wire will be left over?
6. The perimeter of the square below is 96 units. The height of each triangle is a third of the height of the side of the square. Find x and the total area.

7. Draw $\overline{B A} 6 \mathrm{~cm}$ long. Label it $B A$. From point A, draw $\overline{A D}$ so that it is 4 cm long and $\angle B A D$ formed is 25°. Finally, connect points B and D to create $\overline{B D}$.
a. What shape did you create?
b. What kind of triangle does it appear to be?
c. What else can you conclude about triangle BAD from measuring?

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before.
3. Mathematical Practices. Describe an instance in a problem where your computations were not precise and how you interpreted them [SMP 6]. Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.
4. Making Connections. Daniel Keys Moran said, "You can have data without information, but you cannot have information without data." What do you think he meant?

STUDENT RESOURCES

Word or Phrase

experimental
probability
In a repeated probability experim number of times the event occur empirical probability.

If, in 25 rolls of a number nent, the experimental probability of an event is the
rs divided by the number of trials. This is also called sivided by the number of trials. This is also called the experimental probab r cube, we obtain an even number 11 times, we say that bility of rolling an even number is $\frac{11}{25}=0.44=44 \%$.
describing the middle of a numerical data set. The mean, e three commonly used measures of center.

For the data set $\{3,3,5$
the median is 5 . There
$, 6,6\}$, the mean (average) is

viewed as the "center"
A measure of spread (or a mea
a numerical data set. It describe are two modes, 3 and 6 . Each of these numbers can be f the data set in some way.
sure of variability) is a statistic describing the variability of
s how far the values in a data set are from the mean or median.

The standard deviation
(SD or σ), the mean absolute deviation (MAD), and the interquartile range (IQR) are three measures of spread.
population \quad The population is the entire group question refers.

If a survey is taken to in
vestigate how many pets the students at Seaside School er study is the entire student body of Seaside School.

sample	A sample is a subset of the population that is examined in order to make inferences about the entire population. The sample size is the number of elements in the sample. In order to estimate how many phones coming off the production line were defective, the plant manager randomly selected a sample of 50 phones and tested them to see if they worked properly.
simulation	Simulation is the imitation of one process by means of another process. We may simulate rolling a number cube by drawing a card blindfold from a group of six identical cards labeled one through six. We may simulate the weather by means of computer models.
	The theoretical probability of an event is a measure of the likelihood of the event occurring. In the probability experiment of rolling a (fair) number cube, there are six equally likely outcomes, each with probability $\frac{1}{6}$. Since the event of rolling an even number corresponds to 3 of the outcomes, the theoretical probability of rolling an even number is 3 out of 6 , or $3 \cdot \frac{1}{6}=\frac{3}{6}=\frac{1}{2}$.

Dot Plots (Line Plots)

A dot plot (also called a line plot) displays data on a number line with a dot (\bullet) or an X to show the frequency of data values.

Here are the number of siblings (brothers and sisters) for 13 different students:

$$
3,4,5,2,2,3,3,2,2,5,7,1,1
$$

To make a dot plot of this data set:

- Make a number line that extends from the minimum data value to the maximum data value
- Mark a dot or an X for every data value
- Write a title and add vertical and horizontal labels.

Number of Siblings

Measures of Center

Here are the number of siblings for 13 different students:
$3,2,2,5,7,1,1$
To find the mean (average) of a data set, add all the values in the data set and divide the total by the number of values (number of observations, n).

Number of observations: $n=13$
To find the mean:

$$
3+4+5+2+2+3+3+2+2+5+7+1+1=40
$$

$$
40 \div 13 \approx 3.08
$$

To find the median (M), order the values from least to greatest and find the middle number. If there is an even number of values in the data set, the median is the mean (average) of the two middle numbers.

For the siblings data set:
$\{1,1,2,2,2,2,3,3,3,4,5,5,7\}$
\uparrow
median

To find the mode, find the value that occurs most often. (Some data sets may have more than one mode.)
For the siblings data set, the mode is 2 . It is the value 2 occurs most often.

The Range, the Quartiles, and the Five-Number Summary
Here are the number of siblings for 13 different students:

$$
3,4,5,2,2,3,3,2,2,5,7,1,1
$$

To find the range of a data set, find the difference between the greatest value and the least value in the data set.

$$
\text { For the siblings data set, the range is } 6, \text { since } 7-1=6 .
$$

To find quartiles, first put the numbers in numerical order. Then locate the points that divide the data set into four equal parts.

Box Plots (Box-and-Whisker Plots)

A box plot (or box-and-whisker plot) provides a visual representation of the center and spread of a data set. The display is based on the five-number summary.

For the sibling data, the five-number summary is $(1,2, \underline{3}, \underline{4.5}, \underline{7})$.
To make a box plot:

- Locate the five-number summary values on a number line, and indicate each value with a vertical segment
- Create a "box" to highlight the interval from the first to the third quartile, and draw "whiskers" that extend to the minimum and maximum \qquad

Be sure to scale the box plot properly. This plot is WRONG:

Interpreting a Box Plot

This is a box plot.

- Each of the four "sections" (the two whiskers and the two rectangular parts of the box) contains (close to) one-fourth of the data points. Be careful: If one section appears larger than another, we cannot say it has more data points, but only that the data points are spread out over a wider range.
- Sometimes we use the word "quartile" to refer to specific data points. Sometimes the word "quartile" is also used to refer to one of the four quarters, or sections, of the data set. For example, data points that lie within the farthest left section may be referred to as "in the first quartile."

Mean Absolute Deviation

The mean absolute deviation (MAD) is a measure of spread of a numerical data set. It is the arithmetic average of the distance (absolute value) of each data point to the mean. To calculate the MAD statistic:

For the sibling data, there are 13 data points: $3,4,5,2,2,3,3,2,2,5,7,1,1$ To find the MAD statistic.

- Find the mean of the sample.

The mean is 3.08 .

- Find the distance (absolute value) from each data point to the mean.

See the table entries to the right.

- Find the sum of the distances.

See the bottom row of the table.

- Divide the sum of the distances by the number of data points to find the average distance from the mean.

See the calculation below.

Sibling Data	Distance from data point to mean
3	$\|3.08-3\|=0.08$
4	$\|3.08-4\|=0.92$
5	$\|3.08-5\|=1.92$
2	$\|3.08-2\|=1.08$
2	$\|3.08-2\|=1.08$
3	$\|3.08-3\|=0.08$
3	$\|3.08-2\|=1.08$
2	$\|3.08-2\|=1.08$
2	$\|3.08-5\|=1.92$
5	$\|3.08-7\|=3.92$
7	$\|3.08-1\|=2.08$
1	17.4
1	
Sum of distances	
from mean	

Sampling

Sampling refers to selecting a subset of a population to be examined for the purpose of drawing statistical inferences about the entire population. If the sample is representative of the entire population, we may make valid inferences about the entire population based on properties of the sample.

Suppose you want to know how many hours per week students in our school spend watching television. From the population of all students, you select a sample and they watch television. You would like to infer that the the same as for students in the sample.

An easy way to select a sample might be to ask your friends how many hours they watch TV Such a sample is called a convenience sample. However, your friends may not be representative of all students.

To select a more representative sample, you might assign a number to the name of each student in the school, and then use a computerized "random number generator" to select a certain number of the students' numbers. This sort of sample is referred to as a random sample. Its mathematical properties allow us to draw inferences about the population.

The Percent Error Formula

A percent error computation is used to quantify the difference between an estimated value and an actual value as a percentage of the actual value. The formula for percent error (as a percent) is:

If the estimated number of fish in a lake is 45 , and the actual number is 50 , then the percent error is

If the estimated number of fish in a lake is 50 , and the actual number is 45 , then the percent error is

COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT	
7.RP.A	Analyze proportional relationships and use them to solve real-world and mathematical problems.
7.RP. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
7.EE.A	Use properties of operations to generate equivalent expressions.
7.EE. 3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
7.SP.A	Use random sampling to draw inferences about a population.
7.SP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP. 2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.
7.SP.B	Draw informal comparative inferences about two populations.
7.SP. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviatfion) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
7.SP. 4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.
7.SP.C	Investigate chance processes and develop, use, and evaluate probability models.
7.SP. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the
	probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies, if the agreement is not good, explain possible sources of the discrepancy: Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
7.SP. 8	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation: Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tol to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one type A blood?

STANDARDS FOR MATHEMATICAL PRACTICE

SMP1 Make sense of problems and persevere in solving them.
SMP2
Reason abstractly and quantitatively.
SMP3 Construct viable arguments and critique the reasoning of others.
SMP4 Model with mathematics.
SMP5 Use appropriate tools strategically.
SMP6 Attend to precision.
SMP7 Look for and make use of structure.
SMP8 Look for and express regularity in repeated reasoning.

MathLinks: Grade 7 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 10: Student Packet

