\qquad

AREA AND VOLUME

	Monitor Your Progress	Page
My Word Bank		0
My Formula Bank		1
9.0 Opening Problem: Which Rug is Bigger?		2
9.1 Area of Polygons - Derive formulas for the areas of parallelograms, triangles, and trapezoids. - Solve problems that apply area and algebra.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	3
9.2 Surface Area of Prisms and Pyramids - Explore properties of prisms and pyramids. - Use nets to create prisms and pyramids and find their surface areas. - Solve problems apply surface area and algebra.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	12
9.3 Volume of Prisms - Derive formulas for the volume of a right rectangular prism. Use cubes and formulas to compare volumes of right prisms with fractional edge lengths. - Solve problems that apply volume and algebra.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	19
Review		25
Student Resources		33

Parent (or Guardian) signature \qquad
MathLinks: Grade 6 ($2^{\text {nd }}$ ed.) ©CMAT
Unit 9: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.
area
Use b fase, height)
for length of base.

MY FORMULA BANK

Fill in the table below as instructed.

Definition / Description / Properties	Sketch	Formula(s)
1. Rectangle:		Area:
2. Square:		
3. Parallelogram: Area:		
4. Triangle:		

WHICH RUG IS BIGGER?

Follow your teacher's directions. Save the lower part of the sheet for later.

AREA OF POLYGONS

We will derive the area formulas for parallelograms, triangles, and trapezoids. We will apply formulas to solve real world and mathematical problems and review number and algebra concepts. We will find areas of irregular polygons.
[6.G.1, 6.EE.2ac, 6.EE3, 6.EE4, 6.EE6, 6.EE9; SMP2, 5, 6, 7]

GETTING STARTED

One unit of length (1 linear unit) and one unit of area (1 square unit) are defined below.

$$
1 \text { linear unit } \quad 1 \text { square unit }
$$

1. Find the length of the segments labeled:
A. \qquad B. \qquad
Is the length of the segment labeled C equal to 1 linear unit? \qquad Explain how you know.
2. Label a base and height of figure D. The area of figure D is \qquad .
3. Label a base and height of figure E. The area of figure E is \qquad .
4. Figure F (not shown) is a rectangle that is 12 units by 10 units. Explain how to find the area of figure F without drawing it and counting squares.

The area of figure F is \qquad .
5. Complete the rows for rectangle and square in My Formula Bank.

A TANGRAM PUZZLE

Follow your teacher's directions for (1) - (2).
(1)
(2)

3. Order the tangram pieces A, B, C, F, and G from least area to greatest. Do any of these have the same area? Explain.

PRACTICE 1

Use the tangram pieces you created for A Tangram Puzzle to answer the following questions.

1. Create a square using the small triangles.

The area of a small triangle is \qquad the area of the square.
2. Create a parallelogram using the small triangles.

The area of the parallelogram is \qquad the area of a small triangle.

The area of the parallelogram is \qquad the area of the square.
3. How many small triangles exactly cover a
large triangle (without gaps or overlaps)? \qquad Sketch a diagram of this.

Therefore, the area of the large triangle is
 the area of the small triangle.
4. Jamala says that the area of A is 9 square units because the length of each side of the square is 3 units. Critique her reasoning.
5. Adrian says that the area of B is equal to the area of A and G combined. Mahzi disagrees and says the area of B is greater. Who is correct? Explain with words and diagrams.

AREA OF A PARALLELOGRAM

Follow your teacher's directions for (1) - (3).

5. Record the meaning of area in My Word Bank.
6. Complete the row for parallelogram in My Formula Bank.

Find the area of each parallelogram below using the formula. All measures are in centimeters.

8.

AREA OF A TRIANGLE

Follow your teacher's directions for (1) - (3).
(1)
(3)

4. What is the relationship between the area of the original triangle and the area of the parallelogram created by the cut-up strategy?

5. Complete the row for triangle in My Formula Bank.

Find the area of each triangle below using the formula. All measures are in cm .

7.

8. Go back to A Tangram Puzzle and find the area of each of the tangram puzzle shapes using formulas. Record in the last column of the table. Why might the calculations between your original estimates and the areas you found using the formulas be slightly different?

AREA OF A TRAPEZOID

Follow your teacher's directions for (1) - (3).
(1)

(2)

(3)

4. Describe how the two bases of a trapezoid (b_{1} and,b_{2}) relate to the base of the parallelogram formed by combining the two copies of the trapezoid.
5. Complete the row for trapezoid in My Formula Bank.

Find the area of each trapezoid using the formula. All measures are in cm .
6.

7.

PRACTICE 2

For each problem:

- Identify the polygon and the corresponding area formula.
- Measure and label the relevant dimensions to the nearest tenth of a cm (mm).
- Substitute values into the formula and evaluate to find the area.
- Use appropriate units in answers.

1. Polygon Name:

Area formula:

Substitute: \qquad
$A=$ \qquad
What do the little squares mean in the corners of the polygon?
3. Polygon name:

What do the tick marks mean on the sides of the polygon?
2. Polygon name:

Area formula:
Substitute:
$A=$
What do the arrows mean on the sides of the polygon?
4. Polygon Name: \qquad

Area formula: \qquad
Substitute: \qquad
$A=$ \qquad
What do the curved markings mean inside the angles of the polygon?

5. Record the meaning of polygon in My Word Bank.

PRACTICE 3: EXTEND YOUR THINKING

Lewis's house sits on a piece of land that is shaped like an isosceles trapezoid.

230 ft .

This diagram is not to scale.

1. What is the area of Lewis's garden?
2. What is the area of Lewis's house?
3. What is the area of Lewis's entire property?
4. Lewis has a corner desk in his house. Find the area of the desk in square feet. The diagram is not to scale.

5. Go back to the Which Rug is Bigger? and use formulas to find the area of Sarina's and Jianna's rugs. Show your work on that page. Whose rug has a larger area?

PRACTICE 4: EXTEND YOUR THINKING

Use your knowledge of geometry formulas and algebra procedures to solve these problems. Find the height of each polygon described be ow. Draw pictures if helpful.

Figure	1. Rectangle	2. Parallelogram	3. Triangle	4. Trapezoid
Facts	Area $=3,000 \mathrm{u}^{2}$ base $=120 \mathrm{u}$	Area $=215.25 \mathrm{u}^{2}$ base $=20.5 \mathrm{u}$	Area $=108 \mathrm{u}^{2}$ base $=27 \mathrm{u}$	Area $=135 \mathrm{u}^{2}$ base $_{1}=8.4 \mathrm{u}$ base $_{2}=6.6 \mathrm{u}$
Area formula				
Substitute values and solve for h				

Fill in the heights (h) for given base lengths (b) for the indicated polygons with given areas.
5. Parallelograms with area equal to 36 square units.

6. Triangles with area equal to 12 square units.

\boldsymbol{b}	\boldsymbol{h}
1	
2	
3	
4	
6	
8	
12	
24	
0.5	
Rule (equation): $h=$	

SURFACE AREA OF PRISMS AND PYRAMIDS

We will use nets to construct two types of solid figures, prisms and pyramids, and find their surface areas. We will solve real-world and mathematical problems that involve surface area, and review concepts from number and algebra.
[6.G.4, 6.EE.2ac, 6.EE6, 6.EE9; SMP2, 3, 4, 5, 6, 8]

GETTING STARTED

Prisms and pyramids are two types of solid figures.

1. What appear to be some properties of prisms and pyramids?
2. Label each shape as a prism, pyramid, or neither.

3. Record the meanings of solid figure, prism and pyramid in My Word Bank.

FINDING SURFACE AREA USING NETS

Follow your teacher's directions.

PRACTICE 5

Sketch the faces for each object separately or as a net. Find the surface area. Then answer the related question. Diagrams are not to scale.

1. Gift box

Count the numbers of
Faces: \qquad
Edges: \qquad
Vertices: \qquad
Will a piece of wrapping paper that is 18 inches by 18 inches be large enough to wrap the gift box? Explain.

2. Candle
Count the numbers of
Faces:
Edges:
Vertices:
How many candles will fit inside the gift box in problem 1? Explain.

3. Record the meanings of net and surface area in My Word Bank.

WHO NEEDS MORE PAINT?

Follow your teacher's directions for (1) - (2).
(1)
(2)

Robin's Bedroom

Assumptions:

3. Complete the row for rectangular prism in My Formula Bank.

PRACTICE 6: EXTEND YOUR THINKING

Sketch the figure represented by the net for these geometry problems that connect to algebra.
List the numbers of faces, edges, and vertices, and then answer the question.

1. A puzzle box has a surface area of 96 square inches. The top and bottom faces of the box are squares with side lengths of 6 inches. What is the height of the box?

2. This camping tent has a surface area of 432 square feet. The base of the tent is a square with side lengths equal to 12 feet. The lateral faces are isosceles triangles. What is the height of a triangular face?

VOLUME OF PRISMS

We will derive formulas for the volume of a right rectangular prism. We will explore volumes of right rectangular prisms with fractional edge lengths, and apply a volume formula to these figures. We will solve real-world and mathematical problems that involve volume, and review concepts from number and algebra.
[6.G.2, 6.EE.2ac, 6.EE3, 6.EE4, 6.EE6, 6.EE9, 6.RP.3; SMP1, 2, 4, 6, 7]

1. Find the volume of Prism A. Explain.
2. Find the volume of Prism B. Explain.
3. Find the volume of Prism C. Explain.
4. How does knowing the volume of the bottom layer and the number of layers help determine the number of cubes (volume) in the figure?
5. How does knowing the height of a right rectangular prism and the area of the top surface help determine the number of cubes (volume) in the prism?

6. Record the meaning of volume in My Word Bank.

STRATEGIES FOR FINDING VOLUME

Follow your teacher's directions for (1) - (2).
(1) Write Kim's strategy using symbols. $V=$ \qquad
(2) Label the Base with a B on the rectangular prism to the right and fill in the area formula. Then write Mateo's strategy using symbols.
$A_{\text {base }}=$ \qquad

$$
V=
$$

\qquad
Find the volume of each right rectangular prism using:

		Kim's strategy	Mateo's strategy
3.		length \qquad width \qquad height \qquad $V=$	area of Base height \qquad
4.			
5.			

Find the volume of each right rectangular prism described below without counting all of the cubes in the layers individually.
6. Top view of the prism.

Height of the prism: 12 units
Volume of the prism: \qquad
7. Top view of the prism:

Height of the prism: 7 units
Volume of the prism: \qquad

WHAT IF?

For this page, let the little cube have a side length of $\frac{1}{2}$ inch.
Follow your teacher's directions for (1) - (3). (1)
LIS
(3)

4a. Volume of little cube
4b. $\quad \ell=$ \qquad $w=$ \qquad $h=$ \qquad
Find the volume using a formula.
Find the volume by counting the cubes.

PRACTICE 7

For problems $1-5$, let the edge length of the little cube equal $\frac{1}{3}$ inch.

1. Label the edge lengths of
the little cube.
2. This represents $1 \mathrm{in}^{3}$. Draw little cubes in it. How many little cubes fit inside?
3. Volume of a little cube \qquad
4.

$\ell=\square w=$
3. What is the volume of the little cube?

Find the volume using a formula. prism to the right \qquad
Find the volume by counting the cubes.

6. Baseball collectors keep autographed baseballs in cubes that are 3 inches on an edge.
a. Describe the dimensions of the cube in terms of feet.
b. How many baseball cubes will fit into a box that is 1 foot on each edge?
7. Complete this exponent pattern involving cubes.

$8=$ \qquad $27=$ \qquad $64=$ \qquad $125=$ \qquad
8. The numbers $1,8,27,64,125, \ldots$ are called "cubic" numbers. What is their relationship to geometry and measurement?

THE FOOD DRIVE

At Maynard Middle School, the student council led a food drive effort to feed needy families. Enough food was donated for 200 families, so they will fill boxes at school and transport them to their local regional food bank.

They will purchase 200 boxes at $\$ 1.75$ each (taxes included). These boxes are in the shape of cubes, 18 inches on each edge.

They will rent a truck from U-Move for $\$ 19.95$, plus mileage and taxes. The distance from school to the food bank is about 10 miles. The truck has inside dimensions that are 10^{\prime} long (or deep) $\times 6^{\prime}$ wide $\times 8^{\prime}$ high for storage space.

1. What additional information do you need to

If possible, either research the unknowns, estimates here.
determine the cost to pack and deliver the boxes?

or agree as a class, and record reasonable
2. Convert all measurements in the table before making calculation decisions.

	Box		Truck	
	dimensions	volume	dimensions	volume
inches; cubic inches				
feet; cubic feet				
yards; cubic yards				

THE FOOD DRIVE
 Continued

3. Use measurements, drawings, and reasoning to determine how many trips are needed.
4. Make calculations to estimate the cost to pack and deliver the boxes. Use your assumptions from question 1 on the previous page for the cost analysis.

5. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

Below are four geometric figures. Explain why one does not belong with the other three.

TANGRAM AREA

1. Below are four pieces from a set of tangrams. Some lengths of the small triangle (E) are marked. Write the side lengths and heights for all the pieces, based on piece E .

Build figures using the number of pieces indicated. Use each piece no more than once when building a figure. Sketch each figure, label the tangram pieces, and find its total area using an appropriate formula.

1. \quad 2-piece triangle	2.	2-piece trapezoid
3. \quad 3-piece trapezoid		
4-piece trapezoid	6.	

POSTER PROBLEMS: AREA AND VOLUME

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D.	Each large cube described in Part 2 looks similar to the one pictured
here.	
- Each group will start at a numbered poster. Our	
group start poster is	
- Each group will have a different colored marker.	
Our group marker is	

Part 2: Do the problems on the posters by following your teacher's directions. Refer to the large cube above.

Poster 1 (or 5)	Poster 2 (or 6)
Its small cubes each have edge length equal to $\frac{1}{4}$ in.Its small cubes each have edge length equal to $\frac{3}{4}$ in.	
A. Copy the small cube's edge length and find	

Poster 3 (or 7)	Poster 4 (or 8)
Its small cubes each have edge length	Its small cubes each have edge length equal to $\frac{5}{4}$ in.
equal to $\frac{3}{2}$ in.	

ind its volume.
the large cube. Then multiply this number by the volume computed in Part A.
C. Write the length, width, and height of the large cube.
D. Write the formula for the volume of a rectangular prism and use the information from part C to find the total volume of the large cube.

Part 3: Review your original poster. Work with your group and show all work.

1. Compare results from Parts B and D. Are they the same?
2. Write the formula for the volume of a cube with side length equal to s.
3. Use your small cube side length and find the surface area of the large cube.

VOCABULARY REVIEW

parallel and have equal length
7 a \qquad rectangular prism has 6 rectangular faces, and opposite faces are parallel
11 measure of the size of the total surface of a three-dimensional figure (two words)
13 a solid figure where the lateral faces are triangles that meet at "the top" (the apex).
15 measured in cubic units
16 one of the measures of a side of a rectangle (also see 10 down)

Down

a three-sided polygon

3 the distance between two parallel sides of a parallelogram
4 a closed figure made up of a chain of line segments laid end to end

5 A rectangular prism has 6 \qquad that are all rectangles.
7 a quadrilateral with four right angles
8 a polygon with at least one pair of parallel sides
9 a pre-chosen side of a figure, usually the "bottom"
10 one of the measures of a side of a rectangle (see also 16 across)
12 the highest point of a pyramid, (if its base is, say, on a table) - see 13 across
14 a two-dimensional pattern for a three- dimensional figure

SPIRAL REVIEW

1. Computational Fluency Challenge: This paper and pencil exercise will help you gain fluency with multiplication and division. Try to complete this challenge without any errors. No calculators!
a. Start with 1.25. Multiply by 20. Multiply Multiply the result by 4 . Now you have
b. Start with your big number. Divide it by 8. What is the final result? \qquad
the result by 5 . Multiply the result by 0.75 .
a "big number". My big number is \qquad
2. Divide the result by 1.5 . Divide the result by -

3. Complete the table.

Fraction	Decimal	Percent	Percent of \$200
$\frac{8}{5}$			
			$\$ 136$
	0.46		

SPIRAL REVIEW

Continued

4. Lucca is going to sell pies at his school for Pi Day on March $14^{\text {th }}$. He conducted a survey to see which flavor of pie students prefer. He asked people to rate the flavors $1-5$ (1 is dislike very much and 5 is like very much)

The graph below illustrates some results of the survey.

a. Complete the graph above for Lemon Pie with the survey results below.
$5,4,3,5,1,1,1,2,4,3,1,5,2,3,1,3,3,3,4,3$
b. Complete each row in the table below for each pie.

	Mean	Median	Mode	Range
Pecan Pie				
ApplePie				
LemonPie				

Lucca must pick one flavor to sell at his school. What do you recommend that he choose and why?

SPIRAL REVIEW

Continued

5. Stellina is going to play games in the arcade. Her parents give her $\$ 8$ to spend.
a. She spends 40% of her money on a game called Frogger. How much money did she have left?
b. After spending money on candy, she has $\$ 1.50$ left. This is $\frac{2}{3}$ of the amount that her sister has left. How much money does her sister have left?
6. Circle all equations below that have a solution of 4 .
7. Solve each equation.

$$
2+x=6
$$

$2 x=6$

a. $4 g=48$	b.	$h+19=42$		c. $15 y=60$

8. Evaluate each expression.

a. $20\left(\frac{4}{5}-\frac{1}{10}\right)^{2}$	b. $\quad 20\left(\frac{4}{5}\right)-\left(\frac{1}{10}\right)^{2}$	c. $\left(\frac{4}{5}\right)-(20)\left(\frac{1}{10}\right)^{2}$

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before or something you would still like to work on.
3. Mathematical Practice. What tools did you find useful as your explored relationships of shapes and space [SMP5]? Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

4. More Connections. You learned formulas for the areas of rectangles, triangles, parallelograms, and trapezoids. Choose two of these figures and explain how the areas are related.

STUDENT RESOURCES

Word or Phrase	Definition
area	The area of a two-dimensional figure is a measure of the size of the figure, expressed in square units. The area of a rectangle is the product of its length and width (Area $=$ length \bullet width $)$. The area of a rectangle is the product of its base and height (Area = base \bullet height). If this rectangle has a length of 12 inches and a width of 5 inches, then: $A=\ell w$ $A=(12)(5)$ or $A=(12)(5)$ $A=60$ square inches $A=60$ square inches
net	A net for a three-dimensional figure is a two-dimensional pattern for the figure. If cut from a sheet of paper, for example, cube a net forms one connected piece which can be folded with the edges joined to form the given figure.
plane	A plane is a flat, two-dimensional surface without holes that extends to infinity in all directions
polygon	A polygon is a special kind of figure in a plane made up of a chain of line segments laid end-to-end to enclose a region.
	A solid figure refers to a figure in three-dimensional space such as a prism or a cylinder. cube triangular prism rectangular pyramid cylinder

Word or Phrase	Definition
prism	A prism is a solid figure in which two faces (the bases) are identical parallel polygons, and the other faces (referred to as the lateral faces) are parallelograms. If the lateral faces are perpendicular to the bases, the prism is a right prism. Otherwise, the prism is an oblique prism. lateral face A right rectangular prism is a right prism whose bases are rectangles and whose faces are rectangles. An oblique triangular prism is a prism whose bases are triangles and whose faces are parallelograms.
pyramid	A pyramid is a solid figure in which one face (the base) is a polygon, and the other faces (referred to as lateral faces) are triangles with a common vertex (referred to as the apex). The Egyptian pyramids are square pyramids since they have square bases.
right rectangular prism	A right rectangular prism is a six-sided solid figure in which all the faces are rectangles. A rectangular box is a right rectangular prism.
surface area	The surface area of a three-dimensional figure is a measure of the size of the surface of the figure, expressed in square units. If the surface of the three-dimensional figure consists of two-dimensional polygons, the surface area is the sum of the areas of the polygons. If this rectangular box has a length of 3 inches, a width of 4 inches, and a height of 5 inches, then $\begin{aligned} & S A=2(\ell w)+2(\ell h)+(w h) \\ & S A=2(3 \bullet 4)+2(3 \bullet 5)+2(4 \bullet 5) \\ & S A=94 \text { square inches } \end{aligned}$

Word or Phrase	Definition
vertex	A vertex (plural of vertices) of a polygon or solid figure is a point where two edges meet. See polvgon, solid figure. A pentagon has five vertices.
volume	The volume of a three-dimensional figure is a measure of the size of the figure, expressed in cubic units. The volume of a right rectangular prism is the product of its length, width, and height. If this cube has a side length of 3 units, then $V=\ell w h$ $V=3 \bullet 3 \bullet 3$ $V=27$
	Babe of a Polygon (b) Versus Base of a Solid Figure (B)

The base of a polygon is a predesignated side of the figure. It is typically denoted with a "b."
The base is usually regarded as the "bottom" of the polygon. The top is also a base, if it is parallel to the bottom.

Any side of a triangle may be chosen as the

A trapezoid has two bases. They are the parallel sides.

The base of a solid figure is a predesignated face of the figure. It is typically denoted with a " B."
The base is usually regarded as the "bottom" of the figure, on which it is standing. The "top" of a figure is sometimes also referred to as a base if it is identical and parallel to the "bottom."

This right This right pyramid
prismhas two parallel bases has two one base (a hexagon). (hexagons).

Composing and Decomposing Shapes: "Cut-Up Strategies"

Composing shapes refers to joining geometric shapes without overlaps to form other shapes.
Here are two identical triangles $(A$ and $B)$. When joining A and B (after rotating B), the result is a parallelogram with twice the area of each of the given triangles.

Decomposing shapes refers to taking a given geometric shape, and identifying geometric shapes that meet without overlap to form that given shape.

Given parallelogram C, we can identify a segment that creates two identical trapezoids D and E, each with one-half the area of C.

Composing and decomposing shapes are useful strategies for finding area formulas for common polygons derived from ones we already know. We refer to these methods collectively as "cut-up" strategies. For example, first we learn the formula for area of a rectangle. Then we can use a cut-up strategy to find the formula for area of a parallelogram. Then we can use other cut-up strategies to find the formulas for area of a triangle and area of a trapezoid.

Volume and Surface Area of Right Rectangular Prisms

COMMON CORE STATE STANDARDS

