\qquad

INPUTS AND OUTPUTS

	Monitor Your Progress	Page
My Word Bank		0
7.0 Opening Problem: Pick a Dot		1
7.1 Visual Patterns - Review graphing ordered pairs - Describe sequences of numbers generated by visual patterns using verbal descriptions, tables of numbers, graphs, and inputoutput rules. Understand the relationship between dependent and independent variables.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ & & & \\ 3 & 2 & 1 & 0 \end{array}$	2
7.2 Comparing Prices - Use tables of numbers, double number lines, graphs, equations, unit rates, and words to compare prices of similar items.	$3 \begin{array}{llll}3 & 2 & 1\end{array}$	9
Rate Applications Use rates in problem solving contexts. Identify unit rates in tables, graphs, and equations. Deepen understanding of independent and dependent variables.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	14
Review		20
Student Resources		27

Parent (or Guardian) signature \qquad
MathLinks: Grade 6 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 7: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.

PICK A DOT
Follow your teacher's directions for (1) - (4).

5. Record the meaning of coordinate plane in My Word Bank.

VISUAL PATTERNS

We will review graphing ordered pairs. We will use words, tables of numbers, graphs, and algebraic input-output rules (equations) to describe visual patterns. We will identify what is typically the difference between independent variables and dependent variables.
[6RP3a, 6EE2ab, 6EE6, 6EE9; SMP1, 2, 3, 6, 7, 8]

GETTING STARTED
Each small square on the grid represents 1 square unit.

1. Graph and label the following ordered pairs. As an example, the ordered pair $(7,2)$ is graphed and labeled point L.

$A(0,0)$	$B(4,4)$	$C(1,5)$
$E(3,0)$	$F(0,3)$	$G(8,6)$

2. How can you remember that we count the x-coordinate in the direction along the x-axis first and the y-coordinate in the direction along the y-axis second when graphing ordered pairs?

Use the word list below to fill in the blanks. Some words are used more than once. Use the coordinate plane below for reference or notes.

coordinate plane	horizontal	ordered pairs	origin

3. A

is a plane with a horizontal axis and a vertical axis meeting
\qquad .
 axis is typically referred to as the x-axis.
4. The \qquad axis is typically referred to as the y-axis.
5. Points in the coordinate plane are named by pairs of numbers called \qquad
\qquad . They are written in the form (x, y).
6. From the origin to the point located at $(3,5)$, move 3 units in the \qquad direction and 5 units in the \qquad direction.

WHAT COMES NEXT?
Follow your teacher's directions. (1)

Mateo
(2) Picture
(3) Table

(4) Graph

PRACTICE 1

1. Label steps $1-3$ for tile patterns A and B, and draw step 4 for each pattern. Complete the tables and draw the graphs with titles and labels.

Tile Pattern A

2. Why is it appropriate to leave the points unconnected?

INPUT-OUTPUT RULES

Follow your teacher's directions for (1) - (2).

(2)

My Word Bank.

3. Record the meaning of input-output rule ir
4. Write an input-output rule for Pattern A on

Practice 1 in words and symbols.

5. Write an input output rule for Pattern B on

Practice 1 in words and symbols.

The input values (x) are sometimes referred to as the "independent variable," and output values (y) are sometimes referred to as the

Fill in the missing numbers and blanks based tables below, the x-value is considered the in
on the suggested numerical patterns. In the put value and the y-value is the output value.

6.

x	1	2	3	4		6
y	5	6	7		9	

a. Rate of change: for every increase of x by $1, y$ increases by \qquad .
b. Input-output rule (words): add \qquad to an x-value (independent variable) to get its corresponding y-value (dependent variable).
c. Input-output rule (equation): $y=x+$ _

x	1	2	3	4		6
y	4	8	12	16	20	

a. Rate of change: for every increase of x by $1, y$ increases by \qquad .
b. Input-output rule (words): Multiply an x-value (independent variable) by \qquad to get its corresponding y-value (dependent variable).
c. Input-output rule (equation): $y=$ \qquad - x

PRACTICE 2

1. Build steps $1-4$ for tile patterns C and D if needed. Draw step 4 for each. Complete the tables and make graphs with titles and labels. Write an input-output rule (equation).

Tile Pattern C

Rule for D: \qquad
2. True or false: for these patterns, typically the step number is the independent variable.

PRACTICE 3

1. Pattern E is described with a table. Pattern F is described with a graph. Complete the other representations in any order.

Tile Pattern E	
step \# (x)	\# of tiles (\boldsymbol{y})
1	3
2	4
3	5
4	6
5	7

Rule for C :

Rule for D: \qquad
Tile Pattern F

Write the increase in number of tiles for each step for each pattern. E : \qquad F: \qquad
2. True or false: For these patterns, typically the step number is the dependent variable.

MathLinks: Grade 6 (2 $2^{\text {nd }}$ ed.) ©CMAT

PRACTICE 4: EXTEND YOUR THINKING

1. Fill in the chart based upon the work you did for tile patterns $A-F$.

- Column I: Copy each rule (make sure you have the correct rules before proceeding).
- Columns II-IV: Find the numbers of square tiles for the given step numbers.
- Column V: Find each step number when the number of square tiles is 60 .

| I | II | III | IV | V |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Pattern | Step 10 | Step 100 | Step 1,000 | Step Number
 for 60 tiles |
| A \rightarrow | | | | |
| B \rightarrow | | | | |
| C \rightarrow | | | | |
| D \rightarrow | | | | |
| E \rightarrow | | | | |
| F \rightarrow | | | | |
| 2. Complete the table and fill in the blanks. | | | | |

. Complete the table and fill in the bianks.

\boldsymbol{x}	1	2	3	4	5	6	8	11	13
\boldsymbol{y}	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$				$6 \frac{1}{2}$

b. Rate of change: for every increase of x by $1, y$ increases by \qquad .
c. Input-output rule (words): Multiply an x-value by \qquad to get its corresponding y-value;

OR divide an x-value by \qquad to get its corresponding y-value.
d. Input-output rule (equation): $y=$ \qquad - $x ;$ OR $y=\frac{x}{\square}$
e. If $x=100$, then $y=$ \qquad .
f. If $y=100$, then $x=$ \qquad .

COMPARING PRICES

We will use tables, double number lines, graphs, unit prices, equations, and words to compare prices.
[6RP3abc, 6NS3, 6EE2a, 6EE6, 6EE9, 6SP1, 6SP3; SMP1, 2, 4, 5, 7]

Suppose you were shopping for groceries at Barter Jack's and have to make some choices. Explain which choices you'd make and why.

Choice 1: energy bars
Healthy Crunch $\rightarrow 2$ bars for $\$ 2.50$
OR
Super Bar $\rightarrow 3$ bars for $\$ 2.50$

Choice 2: fruit

bananas $\rightarrow 2$ pounds for $\$ 4.10$
OR
apples $\rightarrow 2$ pounds for $\$ 4.95$

THE KEYCHAIN FUNDRAISER

Follow your teacher's directions for (1) and (2).

(1a) HI-TOPS
(1b) Table
2
4
6
1
3

(1c) Rule: \qquad
Double Number Lines (1d)
(2d)

(1e) Graph
(2e) Graph

3. Record the meanings of unit rate and unit price in My Word Bank.

PRACTICE 5

Here are two more keychain packages. Complete the representations for both.

2d. Graph

3. \qquad have the lower unit price because...

PRACTICE 6

Here are two more keychain packages.

1. Complete each table below.

LOCKS	
quantity (x)	Cost in $\$(y)$
3	
6	
1	
2	
5	

2. Explain how you know which is the cheaper purchase based on unit price.
3. Explain how you know which is cheaper based on the entries with $x=3$.
4. Explain how you know which is cheaper based on the entries with $y=10$.
5. Write a rule for each

CUBES: \qquad
6. Complete a graph for each.

7. Which graph illustrates a greater cost increase per each additional keychain? How can you see this when comparing the graphs?

A COMMITTEE DECISION

Help the Lincoln Middle School fundraising committee decide which keychains to sell for the fundraiser. The six different keychains analyzed on the previous pages are listed below. In addition, a small survey was taken, the results of which are in the table below.

1. Complete the table.

Keychain	Price

Keychain	Price	Unit price (price per keychain)	S
Hi-Tops	2 for $\$ 3$		
Donuts	3 for $\$ 4$		
Googlies	5 for $\$ 6$		
Emojis	6 for $\$ 5$		
Locks	3 for $\$ 6$		
Cubes	2 for $\$ 5$		

Consider unit prices from the table.
2. What is the range of prices?

Students polled who preferred this keychain:

Number	
18	
10	
20	
6	
1	

4. What is the mean price?

Write one statistical question based on each.

7. Recommend one or more keychains to the committee based on data from the table.

RATE APPLICATIONS

We will deepen our understanding of independent and dependent variables. We will use rates in money contexts and in time-distance contexts. We will identify unit rate in tables, graphs, and equations.

GETTING STARTED

Julie is saving $\$ 10$ each week from her allowance.

1. Fill in the table for the total amount saved at each week through week 6.

Week \# (W)	1		3		5	6			
Total \$ (T)		20		40					

2. Rate of change: for every increase of one week, the totalincreases by
3. Complete an input-output rule that relates week number to total dollars saved: $T=$ \qquad
4. For the last three entries in the table let $W=10,25$, and 37 . Use your rule to find the corresponding values for T.
5. For problem 2 above, typically, which quantity is the independent variable?
6. After how many weeks of allowance will Julie have saved each amount?

RAISING MONEY FOR MUSIC

Follow your teacher's directions for (1) and (2).
The Springfield Education Foundation is trying to raise $\$ 100,000$ for its music programs. They have fundraisers throughout the year.
(1) The SEF sells holiday trees for its December fundraiser. Each tree sells for \qquad
Table I

\# of trees sold (t)	Money earned in $\$(\boldsymbol{m})$
1	
2	
5	
10	
50	
100	

(2)

Table I: The number of money earned depends on \qquad .

Table II: The number of treés sold depends on \qquad .
3. Write two different equations that relate t and m.

\qquad
Use the equations from problem 3 to complete problems 4-5.
4. If they sell 1,000 trees, how much will they earn?

What percent of the way would they be to their goal?
5. How many trees sold raises $\$ 60,000$?

If they did this, how many more trees would they have to sell to reach their goal?

PRACTICE 7

1. The Springfield Education Foundation hosts a pancake breakfast for its May fundraiser. They sell each breakfast for $\$ 5.50$. Complete Tables III and IV.

Table III		Table IV	
\# of breakfasts sold (b)	Money earned in \$ (m)	Money earned in \$ (m)	\# of breakfasts sold (b)
1		5.50	
2		11	\bigcirc
4		55	
12		110	
40		440	
100		660	
2. Write two different equations that relate b		an	
a. $m=$		$b=$	
3. In Table III, money earned in dollars dep			
If they sell 1,000	akfasts, how	earn?	

5. The Springfield Education Foundation sponsors a walk-a-thon for its August fundraiser. Each entry fee is $\$ 25$. Complete Tables V and VI.

Table VI	
Money earned in \$ (\boldsymbol{m})	\# of entries sold $\mathbf{(w)}$
25	
50	
125	
500	
1,000	
2,000	

6. Write two different equations that relate m and w.
a. $m=$ \qquad b. $w=$ \qquad
7. In Table VI, number of entries sold depends on....
8. How many entries sold accomplishes a $\$ 6,500$ goal?

RUNNING

Martino is training for a marathon. Today he ran for 3 hours and 15 minutes at a constant rate of speed. A graph of his run is shown.

1. Write 3 hours and 15 minutes as a decimal.
2. Write a title and axis labels. The input values are time (in hours). The outputs values are distance (in miles).
3. Why is it appropriate to connect the points on the graph?
4. Explain what the point $(0,0)$ on the graph means in the context of this problem.
5. Complete the table below. Time in hours (\boldsymbol{t})

Distance in miles (d)

6. Write an equation for distance in terms of time.
7. What is the meaning of the coefficient of t in the equation? Circle it in the table and the graph.

8. At this rate, how far did Martino run in 2.5 hours?
9. At this rate, how many hours would it take Martino to run 17 miles?
10. Suppose Martino starts his run fast and then slows down. Make a properly labeled graph to illustrate this situation.

PRACTICE 8

Darryl is doing a 52-mile bicycle ride that takes him 4 hours. He rides at a constant rate.

1. Complete the table below.

Time in	4	2	1	0.5	0.25	0.75	1.5	2.75	3.25
Distance in miles (d)									
2. Write an equation that relates distance and time.									

3. Draw a
4. Draw a graph below. Include at least four points from the table. Be sure to label it completely.

Linda is doing an 18-kilometer uphill hike that takes her 6 hours. She hikes at a constant rate.
4. Complete the table below.

Time in	6		2
hours (t)			
Distance in kilometers (d)		3	

5. Write an equation that relates distance and time.
6. Draw a graph below for Linda's hike. Include at least four points from the table. Be sure to label it completely.

Linda's Hike

PRACTICE 9: EXTEND YOUR THINKING

Refer to Darryl's ride and Linda's hike from the previous page.

1. Sketch a graph for Darryl if, instead of riding at a constant rate the entire race, he started off slowly uphill, then fast downhill, then finished at medium speed on flat land.
2. Sketch a graph for Linda if she hikes at some constant rate the entire time, except for a 30-minute break somewhere in the middle of the hike.

Darryl's Ride

time in $\mathrm{hr}(t)$

Notice that the graphs for Mark and Bibi below have height on the vertical axes.

3. Explain Mark's graph in writing.

4. Explain the part of Bibi's hike that does not make sense.

MathLinks: Grade 6 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 7: Student Packet

Bibi's Ride

REVIEW

POSTER PROBLEMS: INPUTS AND OUTPUTS

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D.
- Each group will start at a numbered poster. Our group start poster is - Each group will have a different colored marker. Our group marker is

Part 2: Do the problems on the posters by following your teacher's directions. Steps 1 and 2 of each pattern are given below.

Part 3: Return to your seats. Work with your group, and show all work.

2. Find which step number has exactly 120 tiles.

MATCH AND COMPARE SORT: INPUTS AND OUTPUTS

1. Individually, match words with descriptions. Record results.

Card set \triangle			Card set \bigcirc		
Card number	word	Card letter	Card number	word	Card letter
I			I		
II			II		
III			III		
IV			IV		

2. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

3. Partners, choose another pair of numbered matched cards and discuss the attributes that are the same and those that are different.

WHY DOESN'T IT BELONG?: INPUTS AND OUTPUTS

Four different stores near LaRonda's home sell yellowfin tuna by the pound. Though prices are listed differently, she can buy any number of pounds at each store at the given rate.

1. Choose one of these price rates and explain why it doesn't belong with the others. Then choose at least one more and explain why it doesn't belong.

2. For the price that is common among three of the stores above, complete the following:

- a table
- a double number line
- a graph
- an input-output rule (equation)

Equation:

VOCABULARY REVIEW

Across

1 If 6 oranges cost $\$ 4.50$, the unit per orange is $\$ 0.75$.

Down

2 If there are 12 pencils for a group of 4 students, the unit \qquad is 3 pencils per each student.

3 Direction of the y-axis as the output

6 Pairs of numbers in the form (x, y) are called \qquad pairs.

7 A rule where, given x, you can find y (2 words)

4 A variable typically thought of as the input

SPIRAL REVIEW

1. Computational Fluency Challenge. This paper and pencil exercise will help you gain fluency with multiplication and division. Try to complete this challenge without any errors. No calculators!

- Start with 2.5. Multiply by 4. Divide the result by 5. Multiply the result by 20 . Multiply the result by 40 . Now you have a "big number". My big number is \qquad .
- Start with your big number. Divide it by 40. Divide the result by 10 . Divide the result by 2. Multiply the result by 5 . Divide the result by 4 . What is the final result?

2. Evaluate each numerical expression below.

Evaluate each numerical expression below.
a. $26-4^{2}$ b. $2(6+4)$
d. $\quad 2+(6+4)^{2}$

3. Christopher needs to paint a rectangular picture that has an area of $12 \frac{3}{8}$ square yards on a brick wall. The width of his painting is $2 \frac{3}{4}$ yards. What does the height of the painting need to be?

SPIRAL REVIEW

Continued

4. Ryann bought 3 drinks that cost $\$ 2$ each and 3 hot dogs that cost $\$ 2.50$ each at the snack bar. Circle the expressions that could be used to compute the total cost.

$$
2+2+2(2.50) \quad 3(2)+3(2.50)
$$

5. Denali and Jena created plans for a quilted blanket in sewing class, using patches that are 6 inches on each side. Patches are represented by the small squares below

> Denali's Plan
a. Whose blanket covers a greater area?
b. After they sew the patches together, they have to sew a ribbon around the edge of their blankets. Who will need to use a longer ribbon? Explain your answer in feet.
c. Leo wants to make a square blanket using 16 patches. Write two equivalent expressions using multiplication and exponents to represent its area.
6. Some nutritionists recommend that teens drink 8 cups of water per day.
a. Yesterday Helena drank 64 oz of water. Did Helena reach this goal? What percent of this goal did Helena drink?
b. Yesterday Betina drank a quart of water. Did Betina reach this goal? What percent of this goal did Betina drink?
c. Yesterday Caryn drank 6 cups of water. Did Caryn reach this goal? What percent of this goal did Caryn drink?

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

2. Unit Progress. Go back to Monitor Your Progress on the cover and complete or update your responses. Explain something you understand better now than before or something you would still like to work on.
3. Mathematical Practice. Did you get stuck on any problems in this unit? What did you do to get unstuck [SMP1]? Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

4. More Connections. Give an example of how data along with your math skills helped you to make a decision or prediction.

STUDENT RESOURCES	
Word or Phrase	Definition
coefficient	A coefficient is a number or constant factor in a term of an algebraic expression. In the expression $3 x+5,3$ is the coefficient of the term $3 x$, and 5 is the constant term.
coordinate plane	A coordinate plane is a plane with two perpendicular number lines (coordinate axes) meeting at a point (the origin). Each point P of the coordinate plane corresponds to an ordered pair (a, b) of numbers, called the coordinates of P. The point P may be denoted $P(a, b)$. The coordinate axes are often referred to as the x-axis and the y-axis respectively. The origin has coordinates (0,0).
double number line	A double number line is a diagram made up of two parallel number lines that visually depict the relative sizes of two quantities. Double number lines are often used when the two quantities have different units, such as miles and hours. The proportional relationship "Wrigley eats 3 cups of kibble per day" can be represented in the following double number line diagram.
dependent variable	A dependent variable is a variable whose value is determined by the values of the independent variables. See independent variable.
equation	An equation is a mathematical statement that asserts the equality of two expressions. $18=8+10$ is an equation that involves only numbers. This is a numerical equation. $18=x+10$ is an equation that involves numbers and a variable and $y=x+10$ is an equation that involves a number and two variables. These are both algebraic (variable) equations.
ex	A mathematical expression is a combination of numbers, variables, and operation symbols. When values are assigned to the variables, an expression represents a number. Some mathematical expressions are 19, $7 x, a+b, \frac{8+x}{10}$, and $4 v-w$.

The Coordinate Plane

A coordinate plane is determined by a horizontal number line (the x-axis) and a vertical number line (the y-axis) intersecting at the zero on each line. The point of intersection $(0,0)$ of the two lines is called the origin. Points are located using ordered pairs (x, y).

- The first number (x-coordinate) indicates how far the point is to the right of the y-axis.
- The second number (y-coordinate) indicates how far the point is above the x-axis.

Point, coordinates, and interpretation
$O(0,0) \rightarrow$ at the intersection of the axes
$P(1,3) \rightarrow$ start at the origin, move 1 unit right, then
$Q(3,1) \rightarrow$ start at the origin, move 3 units right, then
$R(0,2) \rightarrow$ start at the origin, move 0 units right, then 2 units up
$S(2,0) \rightarrow$ start at the origin, move 2 units right, then

Multiple Representations: Tables, Graphs, and Equations

Suppose 4 balloons cost $\$ 6.00$ and each balloon is the same price. Here are some representations for this relationship.

COMMON CORE STATE STANDARDS

STANDARDS FOR MATHEMATICAL CONTENT		
6.RP.A	Understand ratio conce	soning to solve problems.
6.RP. 3	Use ratio and rate reasoning to solve real-world equivalent ratios, tape diagrams, double numbe Make tables of equivalent ratios relating quantiti tables, and plot the pairs of values on the coord Solve unit rate problems including those involvir Find a percent of a quantity as a rate per 100 (e problems involving finding the whole, given a pa	and mathematical problems, e.g., by reasoning about tables of line diagrams, or equations:
a.		les with whole number measurements, find missing values in the nate plane. Use tables to compare ratios.
b		
c		g., 30\% of a quantity means 30/100 times the quantity); solve rt and the percent.
6.NS.B	Compute fluently with multi-digit numbers and	
6.NS. 3	Fluently add, subtract, multiply, and divide multi	i-digit decimals using the standard algorithm for each operation.
6.EE.A	Apply and extend previous understandings	of arithmetic to algebraic expressions.
6.EE. 2	Write, read, and evaluate expressions in which Write expressions that record operations with Evaluate expressions at specific values of their real-world problems.	etters stand for numbers
a		mbers and with letters stand
b.		ariables. Include expressions that arise from formulas used in
6.EE.B	Reason about and solve one-variable equation	ns and inequalitie
6.EE. 6	Use variables to represent numbers and write e understand that a variable can represent an unk number in a specified set.	xpressions when solving a real-world or mathematical problem; nown number, or, depending on the purpose at hand, any
6.EE.C	Represent and analyze quantitative relations	hips between dependent and independent variables.
	al-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.	
6.SP.A	Develop understanding of statistical variability.	
6.SP. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.	
	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	

STANDARDS FOR MATHEMATICAL PRACTICE

SMP1 Make sense of problems and persevere in solving them.
SMP2 Reason abstractly and quantitatively.
SMP3 Construct viable arguments and critique the reasoning of others.
SMP4 Model with mathematics.
SMP5 Use appropriate tools strategically.
SMP6 Attend to precision.
SMP7 Look for and make use of structure.
SMP8 Look for and express regularity in repeated reasoning.

