\qquad Date \qquad
 STATISTICS

	Monitor Your Progress	Page
My Word Bank		0
1.0 Opening Problem: Beach Cleanup		1
1.1 Introduction to Data Analysis - Collect and organize numerical data. - Find measures of center and spread for a data set. - Understand how outliers affect measures of center. - Recognize and develop statistical questions.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	2
1.2 More Measures of Center and Spread - Find the mean and mean absolute deviation (MAD) for a data set. - Interpret the measures of center and spread for a data set.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	6
Data Displays - Construct dot plots (line plots), histograms, and box plots (box-and-whisker plots). Describe the distribution of a data set by examining its center, spread, and overall shape.	$\begin{array}{llll} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{array}$	12
Review		19
Student Resources		27

Parent (or Guardian) signature \qquad
MathLinks: Grade 6 (2 $2^{\text {nd }}$ ed.) ©CMAT
Unit 1: Student Packet

MY WORD BANK

Explain the mathematical meaning of each word or phrase, using pictures and examples when possible. See Student Resources for mathematical vocabulary.
five-number summary interquartile range (IQR)

BEACH CLEANUP

Students at Moffett Middle School in San Diego, CA are expected to commit to community service for 120 minutes, on average, per month.
Everette reads that the beaches are littered with cigarette butts, food wrappers, and plastic bottles, so he chooses to serve by cleaning local beaches.
Here is Everette's beach cleanup log from the start of school through the start of the winter break.

Week $\#$	Week beginning	Number of minutes spent doing cleanup	Week $\#$	Week beginning	Number of minutes spent doing cleanup
1	Aug 17	20	10	Oct 19	10
2	Aug 24	40	11	Oct 26	20
3	Aug 31	30	12	Nov 2	60
4	Sept 7	0	13	Nov 9	50
5	Sep 14	45	14	No 16	40
6	Sep 21	55	15	Nov 23	30
7	Sep 28	50	16	Nov 30	40
8	Oct 5	20	17	Dec 7	20
9	Oct 12	30	18	Dec 14	0

Is Everette living up to his volunteering commitment?

INTRODUCTION TO DATA ANALYSIS

We will find our "name scores" using the given values for each letter. Then we will create a human number line to help us organize our data. We will calculate measures of center and spread for the name score data, and understand how outliers may affect measures of center. We will identify characteristics of a statistical question.
[6.SP.1, 6.SP.2, 6.SP.3, 6.SP.5ac, SMP2, 3, 4, 5, 6]

GETTING STARTED

Dr. Dana is a veterinarian. She records the sizes of dogs in their medical records when they come to her clinic.

1. What might Dr. Dana want to measure to describe the size of a dog?

What units of measure might she use?

Here are the weights (in pounds) of Great Danes (a breed of dog) that came to her veterinary clinic in one week. Complete the table below using this data.

Great Danes (Males)			Great Danes (Females) 45 125 140 130 105 90 190 150 100						120	95

		Males
2. How many Great Danes		
came to the clinic?		

1.1 Introduction to Data Analysis

NAME SCORES

Follow your teacher's directions.
(1) My first name: \qquad My name score:
\qquad
(2)

- Number of observations (n) in the population: $n=$ \qquad
- Make an organized list of the data.

(3)
- Mode(s):
- Median:
(4)
- Minimum: \qquad

- Range of a data set: max min

PRACTICE 1

Bobbie likes to play card games with her friends. Listed below are the number of days she played cards each month last year. Let's explore: How often does Bobbie play cards?

Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
5	10	8	7	7	6	5	5	8	0	8	10

Focus on organizing the data.

1. For how many months was data collected? (number of observations)
2. Rewrite the data in order from least to greatest in the table below.

Focus on measures of center for the data.
3. Write the mode(s) of the data set:

What does this tell us about Bobbie's card playing habits?
4. The median of the data set is __. What does this tell us about her card playing habits?
5. Which of these two measures of center best represents her card playing habits? Explain.

Focus on measures of spread for the data.
6. Range:
7. Five-number summary $\left(\frac{}{\min }, \frac{}{Q_{1}}\right.$, $\left.\frac{}{\text { med. }}, \frac{}{Q_{3}}, \frac{}{\max }\right)$
8. Interquartile range (IQR):
9. What does interquartile range represent?
10. Would you say that Bobbie's card playing has a lot of variability? Justify your answer.
11. Use your data analysis to answer: How often does Bobbie play cards?

Follow your teacher's directions for (1) - (3).
(1)
(2)

For each pair of questions, put a check next
to the statistical question
4. What is the average length of hair for $6^{\text {th }}$ graders in your school? How long is your hair?
5. How far is it from Los Angeles to San Francisco? How long does it typically take people to drive from Los Angeles to San Francisco?
6. How many points did Giannis Antetokounmpo score last night?

How many points per game can we expect Giannis Antetokounmpo to score?
7. How many blue whales can we expect to see on a whale-watching tour?

How many blue whales did you see on your whale-watching tour?
8. How tall are you?

Are you taller or shorter than the average height of students your age?
9. Do $6^{\text {th }}$ graders today watch more TV compared to $6^{\text {th }}$ graders 10 years ago?

How much TV did you watch yesterday?
Let's revisit our name score activity again.
10. What was a statistical question that we answered with the name score data?
11. Record the meaning of statistical questions in My Word Bank.

MORE MEASURES OF CENTER AND SPREAD

We will revisit our class name score data to calculate the mean score and determine if our data set has potential outliers. We will find the mean absolute deviation (MAD) for data sets. We will then interpret measures of center and spread for data sets.
[6.SP.1, 6.SP.2, 6.SP.3, 6.SP.5abcd; SMP1, 2, 3, 4, 5, 6, 7]

GETTING STARTED

BK likes to talk about sports. She says that two attributes needed to be a good basketball team are the ability to play good defense and to get rebounds.

1. How might you measure the ability to play good defense?
2. How might you measure a team's ability to get rebounds?

Two basketball teams' rebound totals for the ast five games are posted below.

The Gremlins				
30	32	45	39	41

3. Put a check next to the better statistical question. Explain.

- Which team had more rebounds in the fifth game?
- Which team is better at rebounding?

4. Answer the statistical question from Problem 3. Explain your reasoning using measures of center and/or measures of spread.
5. Sandy thinks that the median number of rebounds for both data sets is 45 because that is the middle number for both. Do you agree with Sandy?

NAME SCORES REVISITED

Follow your teacher's directions for (1) - (7).
(1)
(2)
(3)
(4)

D \rightarrow
$\mathrm{E} \rightarrow$

8. Record the meanings of mean and outlier in My Word Bank.

PRACTICE 2

Recall in the opening problem that students at Moffett Middle School in San Diego, CA are expected to commit to community service for 120 minutes, on average, per month. Here are the number of volunteer minutes for two students over a 5 -week period.
 explanation.

4. Aaron volunteered 0 minutes during week 5 because he was sick. What is the lowest number of minutes Aaron could volunteer week 6 to have an average of 30 minutes per week?

Say he reaches that number. Is this 6-week average on pace to reach the goal?
5. Go back to the opening problem, Beach Cleanup, and make changes or additions as needed, based on what you've learned about statistical measures.

MEAN ABSOLUTE DEVIATION (MAD)

Recall the two basketball teams, the Gremlins and the Gladiators. Here are their scores over the last five games.

The Gremlins				
30	32	45	39	41

The Gladiators				
28	53	45	21	61

1. Graph the data points on the number lines

2. Which scores seem to have greater spread (variability)? Justify your answer.

The mean absolute deviation (MAD) is another measure of spread for a data set. It is the arithmetic average of the distance of the data points to the mean.

3. Compute the MAD statistic. Calculating MAD
 - Find the mean of the data. Mark it on the

 number line above with an arrow.- Find the distance between each data point and the mean on the number lines.
- Find the sum of these distances to the mean.

Find the mean (average) of these five
distances. This is the MAD statistic. Circle data points that fall within this distance from the mean.
4. What do these MAD scores say about how spread out the scores are for these teams?

PRACTICE 3

This data shows the number of hours of online games played in one week by 13 teens.

13	28	15	10	10	17	4	15	17	10	8	11	6

1. Rewrite the data set in order from least to greatest in the table below.

2. Calculate measures of center and spread associated with the median
\qquad
interquartile range (IQR)
3. What fraction of the observations falls in the IQR?
4. Calculate measures of center and spread associated with the mean.
 mean absolute deviation (MAD) \qquad
5. Does 28 appear to be an outlier? \qquad How does this value affect measures of center?
6. Use your analysis to answer: How many hours do teens typically spend playing online

7. Record the meaning of mean absolute deviation in My Word Bank.

PRACTICE 4: EXTEND YOUR THINKING

This table shows heights of players on Ward High School's Football team.

height	$5^{\prime} 5^{\prime \prime}$	$5^{\prime} 8^{\prime \prime}$	$5^{\prime} 9^{\prime \prime}$	$5^{\prime} 10^{\prime \prime}$	$5^{\prime} 11^{\prime \prime}$	6^{\prime}	$6^{\prime} 1^{\prime \prime}$	$6^{\prime} 2^{\prime \prime}$	$6^{\prime} 3^{\prime \prime}$
\# of players	1	2	3	9	6	6	6	7	2

1. What characteristic (attribute) is described in the table?
2. How is the characteristic measured?
3. How many data points (observations) are in the table?

What does this number represent?
For the table below, use a calculator as needed. Explore the question "What is the typical height of a player on the football team?" with statistical measures. Hint: changing heights to inches may be easier.
4. Find measures of center and spread. Explain what they mean.

Statistical Measure	Value	
Range		
Median		
Five-number summary		
Interquartile Range		
Mean		

5. A new player joins the team and increases the range by 2 inches. What could be the height of the player?

What effect would this player have on the median and the mean?

DATA DISPLAYS

We will display data by constructing line plots (dot plots), histograms, and box plots (box-andwhisker plots). We will describe and analyze the overall shape of the data.
[6.SP.4, 6.SP.2, 6.SP.5abcd; SMP2, 4, 6]

GETTING STARTED

1. Make a list, in order, of the data values in the displays.
2. Write the five-number summary for the data. Circle the median on each display if possible.
3. Find the mean.
4. Which has greater value, the median or the mean? Why?

THREE DATA DISPLAYS

Follow your teacher's directions for (1) - (5).
(1)

(5)

6. Circle thewords below that could be used to describe the shape of the data on our name score data displays.
symmetric
gap
peak
cluster
tail
outlier

PRACTICE 5

Recall the number of hours of online games reported by teens in one week.

13	28	15	10	10	17	4	15	17	10	8	11	6

1. Record the data, in order, from least to greatest, and write the five-number summary.

2. Construct a histogram of the gaming hours and label appropriately.
3. Construct a box poot of the gaming hours data.

PRACTICE 6: THE FOOTBALL TEAM REVISITED

Recall the heights of players on Ward High School's Football team.

height	$5^{\prime} 5^{\prime \prime}$	$5^{\prime} 8^{\prime \prime}$	$5^{\prime} 9^{\prime \prime}$	$5^{\prime} 10^{\prime \prime}$	$5^{\prime} 11^{\prime \prime}$	6^{\prime}	$6^{\prime} 1^{\prime \prime}$	$6^{\prime} 2^{\prime \prime}$	6 '3"
\# of players	1	2	3	9	6	6	6	7	2

3. Which statistical display do you think best helps you to describe the shape of the data? Why?
4. Answer this statistical question by referring to displays that you think are most useful: What is the typical height of a player on the Ward High School football team? Why?

INTERPRETING HISTOGRAMS

Follow your teacher's directions for (1) - (2).

(1)														
(2)														

Chris is training for a half-marathon in the fall The histogram below shows the number of minutes he ran each training day over the summer.
3. Can you tell from this display how many minutes he ran each day? If so, how many? If not, why not?

Number of minutes per day
4. Can you tell from this display how many days he ran? If so, how many? If not, why not?
5. Based on this display, describe Chris's typical training schedule.
6. Why is it important to pay attention to histogram intervals?

INTERPRETING BOX PLOTS

Follow your teacher's directions.

PRACTICE 7

Let the data displays on Getting Started represent data collected about the number of hours teens typically play sports on the weekend.

1. How many teens were surveyed? Explain how you know.
2. What is the typical number of hours played? Explain why you think this.
3. Do you think that anything about these displays is misleading? Explain.

The box plot below contains only whole number values. Use the box plot for problems $4-9$.

4. Create an appropriate title for this box plot if the data represents prices.
5. What is the range of the data set?
6. List the five-number summary

7. The median does not split the box into two identical rectangles. Explain what this means.

9. What conclusions can you draw from the shape of the graph?

REVIEW

POSTER PROBLEMS: STATISTICS

Part 1: Your teacher will divide you into groups.

- Identify members of your group as A, B, C, or D.
- Each group will start at a numbered poster. Our group start poster is
- Each group will have a different colored marker. Our group marker is
\qquad

Part 2: Do the problems on the posters by following your teacher's directions.
Poster 1 (or 5)
Shop Shoes sold the

Poster 2 (or 6)

Poster 3 (or 7)

Poster 4 (or 8)
following sizes during the last hour.

$$
9,7,8,8,10,8,6,5,9,8
$$

Below are the housing prices (in thousands) for the most recent Poster 2 (or 6) sales in Mathville.
$\$ 475, \$ 470, \$ 460, \$ 375, \$ 500, \$ 450, \$ 650, \$ 480, \$ 500, \$ 410$
Teens were surveyed on the number of hours per week they spend looking at a screen.
$40,15,35,45,54,29,25,37,49,38$

The number of pets students own are shown below.

$$
3,4,2,0,1,2,12,4,2,3,5,1,0,2,4
$$

A. Copy the data in numerical order and determine the median and mode.
B. Determine the mean for the data set and note any potential outliers.
C. Find the five-number summary for the data set.
D. Make a data display that would be appropriate for the data set. Be sure to label the graph.

Part 3. Return to your seats with your original poster. Work with your group.
Write a statistical question that can be answered with your group's data set and display. Answer the question and explain your thinking using the measures of center, variability, and/or the data display.

MATCH AND COMPARE SORT: STATISTICS

1. Individually, match words with descriptions. Record results.

Card set \triangle			Card set \bigcirc			
Card number	word	Card letter	Card number	word	Card letter	
I			I			
II			III			
III			IV			
IV						

2. Partners, choose a pair of numbered matched cards and record the attributes that are the same and those that are different.

3. Partners, choose another pair of numbered matched cards and discuss the attributes that are the same and those that are different.

WHY DOESN'T IT BELONG?: STATISTICS

Use the data set with eight data points below, and the box with four numbers to the right.

$$
\begin{array}{llllllll}
2 & 4 & 6 & 8 & 10 & 12 & 14 & 18
\end{array}
$$

All responses below should include statistical concepts and vocabulary.

1. Choose each of the four numbers in the box and explain why it does not belong with the other three in relation to the given data set.
2. Make any data display using the eight data points given at the top of the page. Create a reasonable context for these data points, and label the display appropriately.

VOCABULARY REVIEW

2 value that has striking deviation from others in a data set
3 most common value in a data set
from the mean (abbreviation)
7 a question where data that has potential for variability, and can be collected and analyzed

8 plot that shows data frequencies above a number line
middle number of an ordered data set of data

11 difference between greatest and least value in a data set

4 data points that divide an ordered data set into four equally-sized groups

10 difference between Q_{3} and Q_{1} (abbr.)

SPIRAL REVIEW

1. Computational Fluency Challenge: This paper and pencil exercise will help you gain fluency with multiplication and division. Try to complete this challenge without any errors. No calculators!
a. Begin with the number 2. Multiply your number by 6 . Multiply the result by 7 . Multiply that result by 8 . Multiply that result by 9 . (You should have a "big number.") I began with the number \qquad After multiplying, my big number is \qquad .
b. Start with your big number from above. Divide it by 6 . Divide that result by 7 . Divide that result by 8. Divide that result by 9. After dividing, I got
 (Organize and show work below.)

SPIRAL REVIEW

Continued
2. Sage and Mason were playing a video game. Sage started with 1,345 points. Sage then lost 329 points, gained 415 points, lost a third of his points and then doubled his points. Mason started with 580 , gained 1,002 points, lost half the points, and gained 272 points. Who had the most points at the end?
3. Sookie went to the craft store to buy items for her project. She bought 2 containers for $\$ 2.75$ each, three-fourths yard of fabric at \$7.00/yard, one box of buttons for $\$ 3.42$ and a dozen foam balls for $\$ 0.78$ each.
a. Write a numerical expression for the total bill.

Simplify the expression.
4. Kristi is painting a board for a home improvement project, shown on the right.
a. What is the area of the board?
b. What is the perimeter of the board?
c. What is the difference between the larger side and the smaller side?

5. Write 3 equivalent fractions following the directions below.

	Write the fraction in its simplest form.	Write an equivalent fraction with 24 as the denominator.	Write an equivalent fraction with 18 as the numerator.
$\frac{3}{4}$			
$\frac{2}{12}$			
$\frac{3}{6}$			

REFLECTION

1. Big Ideas. Shade all circles that describe big ideas in this unit. Draw lines to show connections that you noticed.

Give an example from this unit of one of the connections above.
2. Unit Progress. Go back to Monitor Your your responses. Explain something you u you would still like to work on.
3. Mathematical Practice. What tools did you find useful as your explored relationships of shapes and space [SMP5]? Then circle one more SMP on the back of this packet that you think was addressed in this unit and be prepared to share an example.

4. More Connections. Explain how you communicated a story with data.

STUDENT RESOURCES

Word or Phrase	Definition				
box plot	A box plot, or box-and-whiskers plot, is a graphical representation of the five-number summary of a data set. See five-number summary. Box Plot of Number of Texts Per Day of $6{ }^{\text {th }}$ Graders				
dot plot	A dot plot is a graphical representation of a data set where the data values are represented by dots above a number line. See line plot.				
five-number summary	The five-number summary of a data set consists of its minimum value (min), first quartile Q_{1}, median Q_{2}, third quartile Q_{3}, and maximum value (max). The five-number summary is usually written in the form (min, Q_{1}, med., Q_{3}, max). The five-number summary of the data set $1,1,1,3,5,5,6,7,23$ is given by (min, Q_{1}, med., $\left.Q_{3}, \max \right)=$ $1,5,6.5,23$).				
histogram	A histogram is a araphical representation of frequencies of a numerical variable usingrectangles. For anistogram, the horizontal axis is divided into intervals. Each intervalforms she base of a rectangle whose height corresponds to the frequency of values of thevariable in that interval.				
			s of a Class of 16	80-89	- $90-99$
	The interquartile range (IQR) of a numerical data set is the difference between the third quartile and the first quartile of the data set. The interquartile range is a measure of the variation of the data set. For the data set $1,1,1,3,5,5,6,7,23, Q_{1}=1, Q_{3}=6.5$, and $\mathrm{IQR}=5.5$				

Word or Phrase	Definition
line plot	A line plot is a graphical representation of a data set where the data values are represented by marks, such as dots or X's, above a number line. See dot plot.
mean mean absolute deviation	The mean of a data set is a measure of center equal to the average of the values in the data set. The mean is calculated by adding the values in the data set and dividing by the number of data values. The mean of the data set $1,1,1,3,5,5,6,7,23$ is $\frac{1+1+1+3+5+5+6+7+23}{9}=5 \frac{7}{9}=5.77 \ldots$ The mean absolute deviation (MAD) of a data set is the average of the (positive) differences between the values in the data set from the mean. The MAD is a measure of the variation of the data set. For the data set $\{3,3,5,6,6\}$, the mean is 4.6. The distances of the data points to the mean are $1.6,1.6,0.4,1.4$, and 1.4. The MAD is $\frac{1.6+1.6+0.4+1.4+1.4}{5}=1.28$
measure of center	A measure of center is a statistic describing the middle of a data set. The mean, the median, and the mode are three commonly used measures of center of a numerical data set.
measure of spread	A measure of spread is a statistic describing the variability of a data set. It describes how far the values in a data set are from the mean or median. The standard deviation, the mean absolute deviation (MAD), and the interquartile range (IQR) are three measures of spread of a numerical data set. The median of a data set is a measure of center equal to the middle number in the data set, when the values are placed in order from least to greatest. If there is an even number of values in the data set, the median is taken to be the mean (average) of the two middle values. The median of the data set $1,1,1,3,5,5,6,7,23$ is 5 , since the first 5 is the middle value. The median of the data set $5,6,7,23$ is the mean (average) of the two middle numbers, $(6+7) \div 2=6.5$, which is the average of 6 and 7 .

Word or Phrase	Definition
mode	The mode of a data set is the value(s) that occur(s) most often. A data set may have more than one mode. It may also have no mode if all values occur the same number of times. The mode of the data set $1,1,1,3,5,6,6,7,23$ is 1 , since the data value 1 occurs more frequently than any other data value. If a 6 were added to this data set, 6 would also be a mode.
outlier	An outlier of a data set is a data value that is a striking deviation from the overall pattern of values in the data set. For the data set $1,1,1,3,5,6,6,7,23$, the data value 23 is a potential outlier. It appears unusually large relative to the other data values.
quartiles	The quartiles of a data set are points that divide the data set into four equally sized groups, when the values are placed in order from least to greatest. The second quartile is the median, denoted by Q_{2}. The first quartile, denoted by Q_{1}, is the median of the lower half of the data set (the data values less than the middle data value), and the third quartile, denoted by Q_{3}, is the median of the upper half of the data set. Given the ordered data set $1,1,1,3,5,5,6,7,23$, - The middle value is the first 5 : Median $=5$. This is also the second quartile Q2, - The lower half of the data set is $1,1,1,3$. Therefore $Q_{1}=1$. - The upper half of the data set is $5,6,7,23$. Therefore, $Q_{3}=6.5$.
range (of a data set)	The range of a numerical data set is the difference between the greatest and least values in the data set. The range of the data set $1,1,1,3,5,5,6,7,23$ is 22 , since $22=23-1$.
statistical question	A statistical question is a question where numerical data that has potential for variability can be collected and analyzed for the purpose of answering the question. A statistical question: "How much TV do students in my class watch on average?" NOT a statistical question: "How many hours of TV did you watch last week?"

Finding Measures of Center

Here are the number of siblings for 13 different students:

$$
3,4,5,2,2,3,3,2,2,5,7,1,1
$$

To find the median, order the value from least to greatest and find the middle number. If there is an even number of values in the data set, the median is the mean (average) of the two middle numbers.

The median for the siblings data set: $1,1,2,2,2,2$, (3.) $3,3,4,5,5,7$

To find the mode, find the value(s) that occur(s) most often.
The mode for the siblings data set: the value of 2 occurs most often.

To find the mean (average) of a data set, add all the values in the data set and divide it by the number of values (number of observations, n).

Number of observations: $n=13$
The mean for the siblings data set: $\frac{3+4+5+2+2+3+3+2+2+5+7+1+1}{13}=3.08$

Finding the Range and the Quartiles

Here are the number of siblings for 13 different students:

To find the range of a data set, find the difference between the greatest and least values in the data set.
For the siblings data set, the range is 6 , since $7-1=6$
To find quartiles, first put the numbers in numerical order. Then locate the points that divide the set into four equal parts.

Note that Q_{1} is the median of the first half of the data set and Q_{3} is the median of the second half.

How to Construct a Dot Plot

A dot plot (also called a line plot) displays data on a number line with a dot (\bullet) or an X to show the frequency of data values.

Here are the number of siblings for 13 different students:

$$
3,4,5,2,2,3,3,2,2,5,7,1,1
$$

1. Make a number line that extends from the minimum data value to the maximum data value.

2. Mark a dot or an X for every data value.
3. Write a title and labels.

Heads Up! Be sure to line up dots or X's properly. The graph below is visually misleading in a few places. The number of dots at 4 and 5 are the same, but one set is higher than the other, possibly implying there are more. The number of dots at 2 and 4 are different, but they peak at the same height, possibly implying there are the same number of dots.

How to Construct a Histogram

A histogram is a data display that uses adjacent rectangles to show the frequency of data values in intervals. The height of a given rectangle shows the frequency of data values in the interval shown at the base of the rectangle.

Nancy asks each of her 21 classmates how many coins they have in their backpacks. Then she puts the data set in order.

$$
0,0,1,2,2,2,2,3,3,5,5,7,7,7,7,7,10,10,10,12,21
$$

To construct the histogram:

1. Divide the number of coins into equally spaced intervals and make a frequency table: (Here we choose intervals of five.)

2. Record frequencies as rectangles on a data display. Add a title and label the axes.

Number of Coins in Each Backpack

Heads Up! Be sure to make equally spaced intervals. The graph below is visually misleading. The third column has an interval that is twice the others, but the same number of data points as the column to the left of it

How to Construct a Box Plot

A box plot (or box-and-whisker plot) is a visual representation of the center and spread of a data set. The display is based on the five-number summary.

Here are the ages of 15 people:

$$
21,12,28,17,46,35,7,38,42,33,19,9,31,25,28
$$

1. Write the values of the data set from least to greatest.

$$
7,9,12,17,19,21,25,28,28,31,33,35,38,42 \text {, }
$$

2. Find the five-number summary.

3. Locate the five-number summary values on a number line, and indicate with vertical segments.

4. Create a "box" to highlight the interval from the fils
st to the third quartile, and draw "whiskers" that extend to the minimum and maximum.

minimum

Q2
Qu
maximum

Heads Up! Be sure to scale the box and whisker plot properly. This plot is WRONG:

COMMON CORE STATE STANDARDS

	STANDARDS FOR MATHEMATICAL CONTENT
6.SP.A	Develop understanding of statistical variability.
6.SP. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
6.SP.2	Understand that a set of data collected to answer a statistical question has a distribution that can be described by its center, spread, and overall shape.
6.SP.3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
6.SP.B	Summarize and describe distributions.
6.SP.4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
6.SP.5	Summarize numerical data sets in relation to their context, such as by: a. reporting the number of observations.
b.	describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c.	giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviatioh), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. relating the choice of measures of center and variability to the shape of the data distribution and the context in whicht the data were gathered.
L.	

	STANDARDS FOR MATHEMATICAL PRACTICE
SMP1	Make sense of problems and persevere in solving them.
SMP2	Reason abstractly and quantitatively.
SMP3	Construct viable arguments and critique the reasoning of others.
SMP4	Model with mathematics.
SMP5	Use appropriate tools strategically.
SMP6	Attend to precision.
SMP7	Look for and make use of structure.

