STUDENT RESOURCES

Word or Phrase	Definition						
coefficient	A coefficient is a number or constant factor in a term of an algebraic expression. In the expression $3 x+5,3$ is the coefficient of the term $3 x$, and 5 is the constant term.						
dependent variable	A dependent variable is a variable whose value is determined by the values of the independent variables. See independent variable.						
function	A function is a rule that assigns to each input value exactly one output value. For $y=3 x+6$, any input value, say $x=10$, has a unique output value, in this case $y=36$. For $y=x^{2}+1, x=2$ has the unique output value $y=2^{2}+1=5$.						
graph of a function	The graph of a function is the set of all ordered pairs (x, y) where y is the output for the input value x. If x and y are real numbers, then we can represent the graph of a function as points in the coordinate plane.						
independent variable	An independent variable is a variable whose value may be specified. Once specified, the values of the independent variables determine the values of the dependent variables. For the equation $y=3 x, y$ is the dependent variable and x is the independent variable. We may assign a value to x. The value assigned to x determines the value of y.						
input-output rule	An input-output rule for a sequence of values is a rule that establishes explicitly an output value for each given input value.						
	input value (x)	1	2	3	4	5	1.5
	output value (y)	1.5	3	4.5	6	7.5	1.5x
	In the table above, the input-output rule could be $y=1.5 x$. To get the output value, multiply the input value by 1.5 . If $x=100$, then $y=1.5(100)=150$.						
proportional	Two variables are proportional if the values of one are the same constant multiple of the corresponding values of the other. The variables are said to be in a proportional relationship, and the constant is referred to as the constant of proportionality. If Wrigley eats 3 cups of kibble each day, then the number of cups of kibble is proportional to the number of days. If x is the number of days, and y is the number of cups of kibble, then $y=3 x$. The constant of proportionality is 3 .						
unit rate	The unit rate associated with a ratio $a: b$ of two quantities a and $b, b \neq 0$, is the number $\frac{a}{b}$, to which units may be attached. This is sometimes referred to as the value of the ratio. The ratio of 40 miles for every 5 hours has a unit rate of 8 miles per hour.						

Word or Phrase	Definition
y-intercept	The y-intercept of a line is the y-coordinate of the point at which the line crosses the y-axis. It is the value of y that corresponds to $x=0$.
The y-intercept of the line $y=3 x+6$ is 6. If $x=0$, then $y=6$.	

The Coordinate Plane

A coordinate plane is determined by a horizontal number line (the x-axis) and a vertical number line (the y-axis) intersecting at the zero on each line. The point of intersection $(0,0)$ of the two lines is called the origin. Points are located using ordered pairs (x, y).

- The first number (x-coordinate) indicates how far the point is to the right or left of the y-axis.
- The second number (y-coordinate) indicates how far the point is above or below the x-axis.

Point, coordinates, and interpretation

$O(0,0) \rightarrow$ This is the intersection of the axes (origin).
$P(2,1) \rightarrow$ start at the origin, move 2 units right, then 1 unit up
$R(-3,-1) \rightarrow$ start at the origin, move 3 units left, then 1 unit down
$S(1,-3) \rightarrow$ start at the origin, 1 unit right, then 3 units down

$Q(-2,0) \rightarrow$ start at the origin, move 2 units left, then 0 units up or down
$T(0,-2) \rightarrow$ start at the origin, 0 units right or left, then 2 units down

Functions

Some ways to represent rules in mathematics are input-output tables, mapping diagrams, ordered pairs, equations, and graphs.

Examples that are Functions
Input-Output Table

\boldsymbol{x} input	\boldsymbol{y} output
1	1
3	3
5	5
7	7
9	9

This table lists input values with unique output values.

	pe to ald

Ordered Pairs
$(0,2),(1,-2),(2,2),(3,-2)$
In this set of ordered pairs, each input value is assigned to a unique output value. Note that different input values may be assigned the same output value. In this example, both 1 and 3 are assigned the output value -2 .

Examples that are NOT Functions
Mapping Diagram

This mapping diagram is not a function. It is not permissible for the same input value (in this case 2) to be assigned two different output values. However, all other input-output mappings above are fine.

Equation (with Ordered Pairs)

Consider the set of pairs (x, y) that satisfy $x=y^{2}$, such as $(0,0),(25,5)$, and (25, -5$)$. Since the input value, $x=25$, corresponds to two different output values ($y=5$ and $y=-5$), the y-values are not a function of the x values.
This graph represents a
function because every
vertical line through it
intersects at most one
point of the graph. In
other words, each
possible x
corresalue
unique y-value.

Using Multiple Representations to Describe Linear Functions

Here are four representations commonly used to approach a math problem:

- Numbers (numerical approach, as by making a table)
- Pictures (visual approach, as with a picture or graph)
- Symbols (approaching the problem using algebraic symbols)
- Words (verbalizing a solution, orally or in writing)

Each approach may lead to a valid solution. Collectively they should lead to a complete and comprehensive solution, one that is readily accessible to more people and that provides more insight.

Example 1: Describe this pattern of hexagons using numbers, pictures, words, and symbols.

Symbols

A rule for finding the number of segments at step n is $6+(n-1) 5$, which can be simplified to $5 n+1$.

Using Multiple Representations to Describe Linear Functions (Continued)

Example 2: At Papa's Pitas, 2 pitas cost $\$ 1.00$. At Eat-A-Pita, 5 pitas cost $\$ 3.00$. Assuming a proportional relationship between the number of pitas and their cost, use multiple representations to explore which store offers the better buy for pitas.

