STUDENT RESOURCES

Word or Phrase	Definition
conjecture	A conjecture is a statement that is proposed to be true, but has not been proven to be true nor to be false. After creating a table of sums of odd numbers such as $1+3=4,1+5=6$, $5+7=12,3+9=12$, etc., we may make a conjecture that the sum of any two odd numbers is an even number. This conjecture can be proven to be true.
cube of a number	The cube of a number n is the number $n^{3}=n \bullet n \bullet n$. The cube of -5 is $(-5)^{3}=(-5)(-5)(-5)=-125$.
cube root	The cube root of a number n is the number whose cube is equal to n. That is, the cube root of n is the value of x such that $x^{3}=n$. The cube root of n is written $\sqrt[3]{n}$. The cube root of -125 is $\sqrt[3]{-125}=-5$, because $(-5)^{3}=(-5)(-5)(-5)=-125$.
exponent notation	The exponent notation b^{n} (read as " b to the power n ") is used to express n factors of b. The number b is the base, and the natural number n is the exponent. Exponent notation is extended to arbitrary integer exponents by setting $b^{0}=1$ and $b^{-n}=\frac{1}{b^{n}}$. $2^{3}=2 \cdot 2 \cdot 2=8$ (the base is 2 and the exponent is 3) $3^{2} \cdot 5^{3}=3 \cdot 3 \cdot 5 \cdot 5 \cdot 5=1,125$ (the bases are 3 and 5) $\begin{aligned} & 2^{0}=1 \\ & 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \end{aligned}$
radical expression	A radical expression is an expression involving a root, such as a square root. $\sqrt{20}$ and $5 \sqrt{3}$ are radical expressions.
scientific notation	Scientific notation for a positive number represents the number as a product of a decimal between 1 and 10 and a power of 10 . It is typically used to write either very large numbers or very small numbers. In scientific notation, the number 245,000 is written as 2.45×10^{5}. In scientific notation, the number 0.0063 is written as 6.3×10^{-3}.

Numbers Squared and Cubed

Why do we say that a number raised to the second power is "squared"? The reason has to do with the area formula for squares. The area of a square of side length s is given by

$$
\text { area }=s \bullet s=s^{2} .
$$

A square with side length 4 units has area " 4 squared" $=4^{2}=16$ square units.
What about "square root" - where does that term come from?
Here the reason is that a "root" can also refer to the solution of an equation. A "square root" has to do with finding the side length of a square of a given area; that is, of solving the equation $s^{2}=A$. For a given area A, the side length s of the square with area A is side length $=s=\sqrt{A}=$ "square root of A."

A square with area 16 square units has side length $\sqrt{16}=4$ units. $\quad 4 \begin{gathered}4 \\ 16\end{gathered} \rightarrow 4^{2}=16$ and $\sqrt{16}=4$

Why do we say that a number raised to the third power is "cubed"? In this case, the answer has to do with the volume formula for cubes. The volume of a cube with side length s is given by

$$
\text { volume }=s \bullet s \bullet s=s^{3} .
$$

A cube with side length 4 units has volume " 4 cubed" $=4^{3}=64$ cubic units.
In turn, a "cube root" has to do with finding the side length of a cube of a given volume, that is, of solving the equation $s^{3}=V$. For a given volume V, the side length s of the cube with volume V is side length $=s=\sqrt[3]{V}=$ "cube root of V."

A cube with volume 64 cubic units has side length $\sqrt[3]{64}=4$ units.

Although we assume here that V is positive, the cube root of a negative number can be found by solving the equation, $s^{3}=V$. The square root of a negative number is not a real number.

Squaring a number and finding the square root of a number are inverse operations. Similarly, cubing a number and finding the cube root of a number are inverse operations.

Three Facts and Three Rules for Exponents		
Definitions and Rules		Example
Meaning of positive exponent:	$x^{m}=x \bullet x \bullet \ldots \bullet x$ (m factors)	$\begin{gathered} 3^{4}=3 \cdot 3 \cdot 3 \cdot 3 \\ (4 \text { factors of } 3) \end{gathered}$
Fact about zero as an exponent:	$x^{0}=1, x \neq 0$	$\begin{gathered} 3^{0}=1 \\ \left(0^{0} \text { is not defined }\right) \end{gathered}$
Fact about a negative exponent:	$x^{-a}=\frac{1}{x^{a}}, \quad x \neq 0$	$3^{-2}=\frac{1}{3^{2}}$ (0 cannot be in the denominator because division by 0 is not defined)
Product rule for exponents:	$x^{a} \cdot x^{b}=x^{a+b}$	$3^{2} \cdot 3^{1}=3 \cdot 3 \cdot 3=3^{2+1}=3^{3}$
Power rule for exponents:	$\left(x^{a}\right)^{b}=x^{a \bullet b}$	$\left(3^{2}\right)^{3}=3^{2} \cdot 3^{2} \cdot 3^{2}=3^{3 \cdot 2}=3^{6}$
Quotient rule for exponents:	$\frac{x^{a}}{x^{b}}=x^{a-b}, x \neq 0$	$\frac{3^{4}}{3^{6}}=\frac{3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}=3^{4-6}=3^{-2}$ (0 cannot be in the denominator because division by 0 is not defined)
The three rules above apply to expressions with the same base numbers. For example: $5^{3} \cdot 4^{2}=(5 \cdot 5 \cdot 5) \bullet(4 \cdot 4)$, and the product rule does not apply.		

Making Sense of Zero and Negative Exponents			
These patterns show that the definitions for zero and negative exponents are reasonable.			
Pattern: Divide by 2	Result of the division	Pattern as a product	Pattern in exponent form
Start with 8	$2 \bullet 2 \bullet 2$	2^{3}	
$8 \div 2$	4	$2 \bullet 2$	2^{2}
$4 \div 2$	2	2	2^{1}
$2 \div 2$	1	$\frac{1}{2}$	2^{2}
$1 \div 2$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2 \bullet 2}$
$\frac{1}{2} \div 2$	$\frac{1}{8}$	$\frac{1}{2 \bullet 2 \bullet 2}$	$\frac{1}{2^{1}}$ or 2^{-1}
$\frac{1}{4} \div 2$		$\frac{1}{2^{2}}$ or 2^{-2}	

Given number							Related decimal between 1 and 10	Power of 10	Number in scientific notation	Reasoning
$120,000,000$	1.2	10^{8}	1.2×10^{8}	The given number is 10^{8} times 1.2; adjust place values by multiplication.						
0.0000345	3.45	10^{-5}	3.45×10^{-5}	3.45 is 10^{5} times the given number; adjust place values by multiplication.						

Some of the benefits of scientific notation:
(1) Scientific notation is useful for writing numbers with very large or very small values in a compact way.
(2) The power of 10 gives an immediate clue to the relative size of the number.

Error alert!

When comparing numbers in scientific notation such as 2.5×10^{12} and 8.76×10^{8}, a common mistake is to focus on the fact that $8.76>2.5$. Focus on the exponent!

$$
\begin{array}{rlr}
2.5 \times 10^{12} & = & 2,500,000,000,000 \\
8.76 \times 10^{8} & = & 876,000,000
\end{array}
$$

