STUDENT RESOURCES

Word or Phrase	Definition
conjecture	A <u>conjecture</u> is a statement that is proposed to be true, but has not been proven to be true nor to be false.
	After creating a table of sums of odd numbers such as $1 + 3 = 4$, $1 + 5 = 6$, $5 + 7 = 12$, $3 + 9 = 12$, etc., we may make a conjecture that the sum of any two odd numbers is an even number. This conjecture can be proven to be true.
cube of a number	The <u>cube of a number</u> <i>n</i> is the number $n^3 = n \bullet n \bullet n$.
	The cube of -5 is $(-5)^3 = (-5)(-5)(-5) = -125$.
cube root	The <u>cube root</u> of a number <i>n</i> is the number whose cube is equal to <i>n</i> . That is, the cube root of <i>n</i> is the value of <i>x</i> such that $x^3 = n$. The cube root of <i>n</i> is written $\sqrt[3]{n}$.
	The cube root of -125 is $\sqrt[3]{-125}$ = -5, because (-5) ³ = (-5)(-5)(-5) = -125.
exponent notation	The <u>exponent notation</u> b^n (read as " <i>b</i> to the <u>power</u> <i>n</i> ") is used to express <i>n</i> factors of <i>b</i> . The number <i>b</i> is the <u>base</u> , and the natural number <i>n</i> is the <u>exponent</u> . Exponent notation is extended to arbitrary integer exponents by setting $b^0 = 1$ and $b^{-n} = \frac{1}{b^n}$.
	$2^3 = 2 \cdot 2 \cdot 2 = 8$ (the base is 2 and the exponent is 3)
	$3^2 \cdot 5^3 = 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 = 1,125$ (the bases are 3 and 5)
	$2^{0} = 1$ $2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$
radical expression	A <u>radical expression</u> is an expression involving a root, such as a square root.
	$\sqrt{20}$ and $5\sqrt{3}$ are radical expressions.
scientific notation	<u>Scientific notation</u> for a positive number represents the number as a product of a decimal between 1 and 10 and a power of 10. It is typically used to write either very large numbers or very small numbers.
	In scientific notation, the number 245,000 is written as 2.45×10^5 . In scientific notation, the number 0.0063 is written as 6.3×10^{-3} .

Numbers Squared and Cubed

Why do we say that a number raised to the second power is "squared"? The reason has to do with the area formula for squares. The area of a square of side length s is given by

area =
$$s \bullet s = s^2$$

A square with side length 4 units has area "4 squared" = 4^2 = 16 square units.

What about "square root" – where does that term come from?

Here the reason is that a "root" can also refer to the solution of an equation. A "square root" has to do with finding the side length of a square of a given area; that is, of solving the equation $s^2 = A$. For a given area A, the side length s of the square with area A is side length $= s = \sqrt{A} =$ "square root of A."

A square with area 16 square units has side length $\sqrt{16}$ = 4 units.

 $\rightarrow 4^2$ = 16 and $\sqrt{16}$ = 4

 \rightarrow 4³ = 64 and $\sqrt[3]{64}$ = 4

16

64

4

Why do we say that a number raised to the third power is "cubed"? In this case, the answer has to do with the volume formula for cubes. The volume of a cube with side length s is given by

volume =
$$s \bullet s \bullet s = s^3$$

A cube with side length 4 units has volume "4 cubed" = 4^3 = 64 cubic units.

In turn, a "cube root" has to do with finding the side length of a cube of a given volume, that is, of solving the equation $s^3 = V$. For a given volume *V*, the side length *s* of the cube with volume *V* is side length $= s = \sqrt[3]{V} =$ "cube root of *V*."

A cube with volume 64 cubic units has side length $\sqrt[3]{64} = 4$ units.

Although we assume here that V is positive, the cube root of a negative number can be found by solving the equation, $s^3 = V$. The square root of a negative number is not a real number.

Squaring a number and finding the square root of a number are inverse operations. Similarly, cubing a number and finding the cube root of a number are inverse operations.

Three Facts and Three Rules for Exponents				
Definitions a	ind Rules	Example		
Meaning of positive exponent:	$x^m = x \bullet x \bullet \dots \bullet x$ (<i>m</i> factors)	$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ (4 factors of 3)		
Fact about zero as an exponent:	$x^0 = 1, x \neq 0$	$3^0 = 1$, (0^0 is not defined)		
Fact about a negative exponent:	$x^{-a} = \frac{1}{x^a}, \ x \neq 0$	$3^{-2} = \frac{1}{3^2}$, (0 cannot be in the denominator because division by 0 is not defined)		
Product rule for exponents:	$x^a \bullet x^b = x^{a+b}$	$3^2 \bullet 3^1 = 3 \bullet 3 \bullet 3 = 3^{2+1} = 3^3$		
Power rule for exponents:	$(x^a)^b = x^{a \cdot b}$	$(3^2)^3 = 3^2 \bullet 3^2 \bullet 3^2 = 3^{3 \bullet 2} = 3^6$		
Quotient rule for exponents:	$\frac{x^a}{x^b} = x^{a-b}, \ x \neq 0$	$\frac{3^4}{3^6} = \frac{3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = 3^{4-6} = 3^{-2},$ (0 cannot be in the denominator because division by 0 is not defined)		

 $5^3 \bullet 4^2 = (5 \bullet 5 \bullet 5) \bullet (4 \bullet 4)$, and the product rule does not apply.

Making Sense of Zero and Negative Exponents							
These patterns show that the definitions for zero and negative exponents are reasonable.							
Pattern: Divide by 2	Result of the division	Pattern as a product	Pattern in exponent form				
	Start with 8	2•2•2	2 ³				
8 ÷ 2	4	2•2	2 ²				
4 ÷ 2	2	2	21				
2 ÷ 2	1	1	2 ⁰				
1 ÷ 2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2^1}$ or 2^{-1}				
$\frac{1}{2} \div 2$	$\frac{1}{4}$	$\frac{1}{2 \bullet 2}$	$\frac{1}{2^2}$ or 2^{-2}				
$\frac{1}{4} \div 2$	$\frac{1}{8}$	$\frac{1}{2 \bullet 2 \bullet 2}$	$\frac{1}{2^3}$ or 2 ⁻³				

MathLinks: Grade 8 (2nd ed.) ©CMAT Unit 3: Student packet

Scientific Notation						
Given number	Related decimal between 1 and 10	Power of 10	Number in scientific notation	Reasoning		
120,000,000	1.2	10 ⁸	1.2 × 10 ⁸	The given number is 10 ⁸ times 1.2; adjust place values by multiplication.		
0.0000345	3.45	10 ⁻⁵	3.45 × 10⁻⁵	3.45 is 10 ⁵ times the given number; adjust place values by multiplication.		
Some of the benefits of scientific notation:						
(1) Scientific notation is useful for writing numbers with very large or very small values in a compact way.						
(2) The power of 10 gives an immediate clue to the relative size of the number.						
Error alert!						
When comparing numbers in scientific notation such as 2.5×10^{12} and 8.76×10^{8} , a common mistake is to focus on the fact that $8.76 > 2.5$. Focus on the exponent!						
		-	$\times 10^{12}$ = 2 5×10^{8} =	2,500,000,000,000 876,000,000		