STUDENT RESOURCES

Word or Phrase	Definition
congruent figures	Two figures in the plane are <u>congruent figures</u> if the second can be obtained from the first by a sequence of one or more translations, rotations, and reflections.
	Two squares are congruent if they have the same side-length.
	congruent not congruent
dilation	A <u>dilation</u> is a transformation that moves each point along the ray through the point emanating from a fixed center, multiplying distances from the center by a common scale factor. The fixed center is referred to as a "center point."
	The transformation of the plane mapping $(x, y) \rightarrow (2x, 2y)$ is a dilation with center at the origin and scale factor 2.
image	The <u>image</u> of a function or transformation is the collection of its output values. The input values are then referred to as the pre-image. See <u>transformation</u> .
rigid motion	A <u>rigid motion</u> is a transformation that preserves distances. Any rigid motion of the plane is a sequence of one or more translations, rotations, and reflections. Rigid motions also preserve lengths, angle measures, and parallel lines.
scale factor	A <u>scale factor</u> is a positive number which multiplies some quantity.
similar figures	Two figures in the plane are <u>similar figures</u> if one can be moved to exactly cover the other by a sequence of one or more translations, rotations, reflections, and dilations. In similar figures, corresponding angles are congruent, and lengths of corresponding sides are proportional.
	similar not similar
	If $\triangle ABC$ is similar to $\triangle DEF$, we write $\triangle ABC \sim \triangle DEF$.
transformation	A <u>transformation</u> is a function that maps points in the plane (called the pre-image) to points in the plane (called the <u>image</u>).
	Translations, rotations, reflections, and dilations are transformations of the plane.

Student Resources

In the figures to the right, if the sums of the angles in both triangles are to be 180° , then angles *c* and *f* must have the same measure. Therefore, the two triangles must be similar.

Finding Side Lengths of Similar Triangles

8

а

If the two triangles below are similar, there are two basic ways to set up proportions to find missing side lengths.

Method 1: Establish values of ratios of corresponding segments **between** the two figures.

$$\frac{6}{12} = \frac{8}{x} \rightarrow x = 16$$
 and $\frac{6}{12} = \frac{9}{y} \rightarrow y = 18$

Method 2: Establish values of ratios of corresponding segments **within** the two figures.

С

х

$$\frac{8}{6} = \frac{x}{12} \rightarrow x = 16 \text{ and } \frac{9}{6} = \frac{y}{12} \rightarrow y = 18$$

MathLinks: Grade 8 (2nd ed.) ©CMAT Unit 10: Student Packet