Unit 10: Similarity

Dear Parents/Guardians,

Unit 10 builds on the geometric concepts from Unit 9. In Lesson 1, students explore a fourth transformation, dilations. In Lesson 2, students see how dilations lead to a definition of similarity and compare this with the definition of congruence. In Lesson 3, students determine whether two triangles are similar using the Angle-Angle Criterion for Similarity of Triangles. They connect similar triangles to the slope of a line and solve triangle problems to find missing measures.

Dilations and Similarity

A dilation is a transformation where the image is not congruent to the original figure (unless the scale factor is 1).

Two figures are similar if one can be obtained from another by a sequence of (one or more) translations, rotations, reflections, and **dilations.**

 $\triangle R'Y'T'$ can be obtained from $\triangle RYT$ by:

- Rotating △RYT 90° clockwise around Y
- Translating $\triangle RYT$ up 7 and to the left 5
- **Dilating** $\triangle RYT$ with a scale factor of $\frac{1}{2}$

Similar Triangles

Another way to determine if two triangles are similar is the Angle-Angle Criterion for Similarity of Triangles. If two angles in one triangle are equal in measure to two angles in another triangle, then the triangles are similar.

Statement	Reason		
	Vertical angles are		
ZAED = ZCED	congruent.		
	Alternate interior angles are		
$\angle DAE \cong \angle BCE$	congruent.		
$\Delta ADE \sim \Delta CBE$	Angle-Angle Criterion.		

Similarity and Slope

Applying the Angle-Angle Criterion, students will determine that the slope of a line is always the same as the ratio of lengths of similar right triangle legs and use these properties to prove that triangles are similar.

Statement	Reason	y,
∠ABD ≅ ∠DCE	Both are right angles.	
BD CE	Both line segments are horizontal.	
∠BDA ≅ ∠CDE	Line \overrightarrow{AE} is the transversal. Corresponding angles are congruent.	В
∆abd ~ ∆dCe	AA Criterion	

The lengths of corresponding sides of similar triangles are proportional.

AB	_2	CD	_ 4 _	2	The slope of line	\overrightarrow{AE} is $\frac{2}{2}$.
BD	3	CE	6	3		3

By the end of the unit, your student should know...

- How perform and understand properties of dilations [Lesson 10.1]
- How to apply the Pythagorean theorem to explore properties of dilations and similarity [Lessons 10.1, 10.2]
- How do define similarity
 [Lesson 10.2]
- How similarity and congruence are the same and how they are different [Lessons 10.2, 10.3]
- How to define the angleangle criterion for similarity of triangles and use it to solve problems [Lesson 10.3]
- How to use the connection between parallel lines and similar triangles to slopes of lines to solve for missing triangle measures [Lesson 10.3]

Additional Resources

- For definitions and
- additional notes please refer to Student Resources at the end of this unit.
- For more information on dilations:

https://youtu.be/BCllaARDOWI