STUDENT RESOURCES

Word or Phrase	Definition
adjacent angles	Two angles are adjacent if they have the same vertex and share a common ray, and they lie on opposite sides of the common ray. $\angle A B C$ and $\angle C B D$ are adjacent angles.
alternate exterior angles	When two lines in a plane are cut by a transversal, two angles on opposite sides of the transversal and outside the two lines are referred to as alternate exterior angles. When parallel lines are cut by a transversal, alternate exterior angles have the same measure. Line m is not parallel to line n. $\angle 1$ and $\angle 2$ are alternate exterior angles. Line m is parallel to line n. $\angle 1$ and $\angle 2$ are alternate exterior angles. $\|\angle 1\|=\|\angle 2\|$
alternate interior angles	When two lines in a plane are cut by a transversal, two angles on opposite sides of the transversal and between the two lines are referred to as alternate interior angles. When parallel lines are cut by a transversal, alternate interior angles have the same measure. Line m is not parallel to line n. $\angle 1$ and $\angle 2$ are alternate interior angles. Line m is parallel to line n. $\angle 1$ and $\angle 2$ are alternate interior angles. $\|\angle 1\|=\|\angle 2\|$
complementary angles	Two angles are complementary if the sum of their measures is 90°. Two angles that measure 30° and 60° are complementary.

Word or Phrase	Definition
cone	A circular cone is a figure in space consisting of a circle in a plane (called the base of the cone), a point off the plane (called the vertex of the cone), and all the straight line segments joining the vertex to the base. If the line joining the vertex of the cone to the center of its base is perpendicular to the base, the cone is a right circular cone. Otherwise it is an oblique circular cone. right circular cone oblique circular cone
corresponding angles	When two lines in a plane are cut by a transversal, two angles that appear on the same side of the transversal in the same relative location are referred to as corresponding angles. When parallel lines are cut by a transversal, corresponding angles have the same measure. Line m is not parallel to line n. $\angle 1$ and $\angle 2$ are corresponding angles. Line m is parallel to line n. $\angle 1$ and $\angle 2$ are corresponding angles. $\|\angle 1\|=\|\angle 2\|$
cylinder	A (right circular) cylinder is a figure in three-dimensional space that has two parallel circular bases. These circles are connected by a curved surface, called the lateral surface, which is a "rolled up" rectangle. Most soup cans have the shape of a right circular cylinder.
exterior angle of a triangle	An exterior angle of a triangle is an angle formed by a side of the triangle and an extension of its adjacent side. $\angle 1$ is an exterior angle of $\triangle A B C$.

Word or Phrase	Two lines in a plane are parallel if they do not meet. Two line segments in a plane are parallel if the lines they lie on are parallel. parallel
perpendicular	Two lines are perpendicular if they intersect at right angles. distance (the radius) from a specified point (the center).
sphere	Two angles are supplementary if the sum of their measures is 180°. Any two right angles are supplementary, because the sum of their measures is $90^{\circ}+90^{\circ}=180^{\circ}$. Angles A and B are supplementary because they determine a straight line, or 180°.
supplementary angles	A transversal is a line that passes through two or more other lines.
transversal	Two angles are vertical angles if they are the opposite angles formed by a pair of a a fixed intersecting lines. When two lines intersect at a point, they form two pairs of vertical angles with vertex at the point. $\angle 1$ and $\angle 3$ are vertical angles. $\angle 2$ and $\angle 4$ are vertical angles.

Some Properties of Equality

Properties of equality govern the manipulation of equations (mathematical sentences).
For any three numbers a, b, and c :
\checkmark Addition property of equality (Subtraction property of equality) If $a=b$ and $c=d$, then $a+c=b+d$.
\checkmark Multiplication property of equality (Division property of equality) If $a=b$ and $c=d$, then $a c=b d$
\checkmark Reflexive property of equality $a=a$
\checkmark Symmetric property of equality
If $a=b$, then $b=a$
\checkmark Transitive property of equality
(Substitution property)
If $a=b$, and $b=c$, then $a=c$

Geometry Notation

Here are some geometry notations used in these lessons.

- Points are named by capital letters.
- The symbol for triangle is Δ.
- The symbol for angle is \angle.
- Absolute value signs are used to denote nonnegative quantities that measure the "size" of something, such as length or angle measure.

The measure of an angle called $\angle N$ is denoted by $|\angle N|$. The small square at N indicates that $\angle L N M$ is a right angle, that is, that $|\angle L N M|=90^{\circ}$.
 In naming a triangle, vertices may be listed in either a clockwise or counter clockwise direction. For example, the triangle may be named $\triangle L M N$ or $\triangle L N M$.

In naming an angle, vertices may be listed in either a clockwise or counterclockwise direction. In the triangle above, the angle at the top can be denoted by $\angle N L M, \angle M L N, \angle L$ or $\angle 1$.

The pair of adjacent angles to the right are $\angle F G J$ and $\angle H G F$. Using $\angle G$ to name an angle is unclear They share the common ray $\overrightarrow{G F}$. The two adjacent angles together form the angle $\angle J G H$.

The arrows on the lines m and n indicate that they are parallel.

Formulas for Circles

Let $r=$ radius of a circle.
Let $d=$ diameter of a circle.
Circumference:

$$
C=\pi d \quad \text { or } \quad C=2 \pi r
$$

Area:

$$
A=\pi r^{2}
$$

Volume Formulas

Here are some volume formulas from this unit.

Volume of a Rectangular Prism

Let $\ell=$ length and $w=$ width of rectangular base.

$$
V=B h
$$

Area of base $(B)=\ell w$
Therefore, $V=\ell w h$

Volume of a Cylinder

Let $r=$ radius of the circular base.

$$
V=B h
$$

Area of base $(B)=\pi r^{2}$
Therefore, $V=\pi r^{2} h$

Volume of a Sphere

Through experimentation, observe that the volume of a sphere is $\frac{2}{3}$ of the volume of a cylinder whose diameter and height are the same as the diameter of the sphere. Use substitution to derive the formula of a sphere.

Let $r=$ radius of the sphere and cylinder
Then height (h) of cylinder $=2 r$
Volume of cylinder $=\pi r^{2}(2 r)=2 \pi r^{3}$
Observe that volume of sphere is $\frac{2}{3}$ of the volume of a cylinder.

Therefore, $V_{\text {sphere }}=\frac{2}{3} \cdot 2 \pi r^{3}=\frac{4}{3} \pi r^{3}$

Transversals and Parallel Lines

In this figure, line k is a transversal. Lines m and n are NOT parallel.
When two lines in a plane are cut (crossed) at two points by a transversal, eight angles are created. Some of these pairs of angles have special names.
corresponding angles

$\angle 1$ and $\angle 5$	$\angle 2$ and $\angle 6$
$\angle 3$ and $\angle 7$	$\angle 4$ and $\angle 8$

alternate interior angles
$\angle 3$ and $\angle 6$
$\angle 4$ and $\angle 5$
Here are three important properties of the angles formed when a transversal cuts two parallel lines.

1. If two parallel lines are cut by a transversal, then alternate interior angles have the same measure.
Example: $|\angle 3|=|\angle 6|$ and $|\angle 4|=|\angle 5|$
2. If two parallel lines are cut by a transversal, then alternate exterior angles

alternate exterior angles

$$
\begin{aligned}
& \angle 1 \text { and } \angle 8 \\
& \angle 2 \text { and } \angle 7
\end{aligned}
$$

 have the same measure.
Example: $|\angle 1|=|\angle 8|$ and $|\angle 2|=|\angle 7|$
3. If two parallel lines are cut by a transversal, then corresponding angles have the same measure.
Example: $|\angle 2|=|\angle 6|$ and $|\angle 4|=\mid \angle 8$

Interior and Exterior Angles in Triangles

Here are two important facts about angle sums in triangles.

1. The sum of the measures of the angles in a triangle is equal to 180°.

$$
|\angle d|+|\angle b|+|\angle e|=180^{\circ}
$$

2. The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

$|\angle b|+|\angle e|=|\angle f|$
