STUDENT RESOURCES

Word or Phrase	Definition	
absolute value	The <u>absolute value</u> $ x $ of a number x is the distance from x to 0 on the number line.	
	2 = 2 and $ -2 = 2$, because both 2 and -2 are 2 units from 0 on the number line. -1 0 1	
addend	See <u>sum</u> .	
additive identity property	The <u>additive identity property</u> states that $a + 0 = 0 + a = a$ for any number <i>a</i> . In other words, the sum of a number and 0 is the number.	
	We say that 0 is an <u>additive identity</u> . The additive identity property is sometimes called the <u>addition property of zero</u> .	
	3 + 0 = 3, $0 + 7 = 7$, $-5 + 0 = -5 = 0 + (-5)$	
additive inverse	The <u>additive inverse</u> of a is the number b such that $a + b = b + a = 0$. The additive inverse of a is denoted by $-a$.	
	-4 is the additive inverse of 4.	
additive inverse property	The <u>additive inverse property</u> states that $a + (-a) = 0$ for any number a . In other words, the sum of a number and its opposite is 0. The number $-a$ is the additive inverse of a .	
	3 + (-3) = 0, -5 + 5 = 0	
difference	In a subtraction problem, the <u>difference</u> is the result of subtraction. The <u>minuend</u> is the number from which another number is being subtracted, and the <u>subtrahend</u> is the number that is being subtracted.	
	12 – 4 = 8 minuend subtrahend difference	
integers	The <u>integers</u> are the whole numbers and their opposites. They are the numbers 0, 1, 2, 3, and -1, -2, -3,	
minuend	See <u>difference</u> .	
negative numbers	<u>Negative numbers</u> are numbers that are less than zero, written $a < 0$. The negative numbers are the numbers to the left of 0 on a horizontal number line, or below zero on vertical number line.	
	The numbers -2, -4.76, and $-\frac{1}{4}$ are negative.	
	The numbers 2 and 5.3, and 0 are NOT negative.	

Word or Phrase	Definition	
opposite of a number	The <u>opposite of a number</u> n , written $-n$, is its additive inverse. Algebraically, the sum of number and its opposite is zero. Geometrically, the opposite of a number is the number on the other side of zero at the same distance from zero.	
	The opposite of 1 is -1, because $1 + (-1) = -1 + 1 = 0$. The opposite of -1 is $-(-1) = 1$. Thus, the opposite of a number does not have to be negative. -1 0 1	
positive numbers	<u>Positive numbers</u> are numbers that are greater than zero, written $a > 0$. The positive numbers are the numbers to the right of 0 on a number line, or above zero on a vertical number line.	
	The numbers 3, 2.6, and $\frac{3}{7}$ are positive.	
	The numbers -3, -2.6, $-\frac{3}{7}$, and 0 are NOT positive.	
rational numbers	<u>Rational number</u> are numbers expressible in the form $\frac{m}{n}$, where <i>m</i> and <i>n</i> are integers, and $n \neq 0$.	
	$\frac{3}{5}$ is rational because it is a quotient of integers.	
	$2\frac{1}{3}$ and 0.7 are rational numbers because they can be expressed as quotients of	
	integers, namely $\frac{7}{3}$ and $\frac{7}{10}$, respectively.	
	$\sqrt{2}$ and π are NOT rational numbers. They cannot be expressed as a quotient of integers.	
subtrahend	See <u>difference</u> .	
sum	A <u>sum</u> is the result of addition. In an addition problem, the numbers to be added are <u>addends</u> .	
	7 + 5 = 12 addend addend sum	
whole numbers	The <u>whole numbers</u> are the natural numbers together with 0. They are the numbers 0, 1, 2, 3,	
zero pair	In the counter model, a positive and a negative counter together form a zero pair.	
	Let $+$ represent a positive counter and $(+ + +)$	
	let – represent a negative counter.	
	Then the figure to the right is an example of a collection of (three) zero pairs.	

Mr. Mortimer's Magic Cubes

Mr. Mortimer discovered an amazing way to control the temperature of liquid. He invented magic hot and cold cubes to change the liquid's temperature. These magic cubes never melt or change in any way. For example, ice cubes melt, but magic cold cubes do not.

Hot Cubes (the basics):

- If you add 1 hot cube to a liquid, the liquid heats up by 1 degree.
- If you remove 1 hot cube from the liquid, the liquid cools down by 1 degree.

Cold Cubes (the basics):

- If you add 1 cold cube to the liquid, the liquid cools down by 1 degree.
- If you remove 1 cold cube from the liquid, the liquid heats up by 1 degree.

How this temperat	For 1 cube	
Hot Cubes	Put in Heat \rightarrow Hotter	add (+1) \rightarrow +(+1) = +1
Positive (+)	Remove Heat \rightarrow Colder	subtract (+1) \rightarrow -(+1) = -1
Cold Cubes	Put in Cold \rightarrow Colder	add (-1) → +(-1) = -1
Negative (–)	Remove Cold \rightarrow Hotter	subtract (-1) \rightarrow -(-1) = +1

Here are a few examples to show temperature change using magic hot and cold cubes.

	Simplest ways:		Other Ways:	
+4 degrees	Put in 4 hot cubes	Remove 4 cold cubes	Put in 6 hot cubes and put in 2 cold cubes	Remove 6 cold cubes and remove 2 hot cubes
	+(+4) = 4	-(-4) = 4	+(+6) + (-2) = 4	-(-6) - (+2) = 4
-2 degrees	Remove 2 hot cubes	Put in 2 cold cubes	Remove 3 hot cubes and remove 1 cold cube	Put in 3 cold cubes and put in 1 hot cube
	-(+2) = -2	+(-2) = -2	-(+3) – (-1) = -2	+(-3) + (+1) = -2
0 degrees	Do nothing		Put in 4 hot cubes and put in 4 cold cubes	Remove 3 hot cubes and remove 3 cold cubes
	0		+(+4) + (-4) = 0	-(+3) - (-3) = 0

Representing the Additive Inverse			
The minus sign may be used to show additive inverses. The	Example: If $a = -3$, then $-a = 3$		
identity $a + (-a) = 0$ means that -a is the additive inverse of a. It is what we add to a to get 0. The statement, "If a is equal to minus 3, then minus a is equal can be read:			
	• If <i>a</i> is equal to the opposite of 3, then the opposite of <i>a</i> is equal to 3. When we add -3 and 3, the result is 0.		
	a -a		
	∢ ♦ ↓ ♦ ▶		
	-3 0 3		

A Counter Model

This counter model is used to model integers.

Let + represent a positive counter with a value of positive 1

Let – represent a negative counter with a value of negative 1.

A <u>zero pair</u> is a pair with one positive counter and one negative counter. Both representations below have a value of zero.

one zero pair:

three zero pairs:

Below are some counter diagrams that represent the given integers:

	+4	-2	0
Simplest representation:	++++		(no counters)
Other	++ +	++	+
	++ -		-
representations:	++++		++ ++
	++	++ ++	

Integer Addition Using Counters			
-3 + (-5) = -8	-3 + 5 = 2	3 + (-5) = -2	
===	+++++	±±±	
• Start with a work space equal to zero.	• Start with a work space equal to zero.	• Start with a work space equal to zero.	
Build negative 3.	Build negative 3.	Build positive 3.	
• The (+) means to add.	• The (+) means to add.	• The (+) means to add.	
• Add 5 negative counters.	Add 5 positive counters.	Add 5 negative counters.	
The result is 8 negative counters.	The result is 2 positive counters.	• The result is 2 negative counters.	

Rules for Addition of Integers

Rule 1: When the addends have the same sign, add the absolute values. Use the original sign in the answer.

Rule 2: When the addends have different signs, subtract the absolute values. Use the sign of the addend with the greatest absolute value in the answer.

Rule for Subtraction of Integers

Rule: In symbols, a - b = a + (-b) and a - (-b) = a + b.

In words, the result is the same whether subtracting a quantity or adding its opposite.

Examples: 6 - 4 = 6 + (-4) = 2

MathLinks: Grade 7 (2nd ed.) ©CMAT Unit 4: Student Packet