STUDENT RESOURCES

Word or Phrase	Definition					
dependent events	Two events are <u>dependent</u> if the occurrence (or nonoccurrence) of one event affects the likelihood of the other. See <u>independent events</u>					
event	An <u>event</u> is a subset of the sample space. See sample space.					
	In the probability experiment of rolling a number cube, "rolling an even number" is an event, because getting a 2, 4, or 6 is a subset (part) of the sample space of {1, 2, 3, 4, 5, 6}.					
experimental probability	In a repeated probability experiment, the <u>experimental probability</u> of an event is the number of times the event occurs divided by the number of trials. This is also called <u>empirical probability</u> .					
	If, in 25 rolls of a number cube, we obtain an even number 11 times, we say that the experimental probability of rolling an even number is $\frac{11}{25} = 0.44 = 44\%.$					
fair game	A game of chance is a fair game if all players have equal probabilities of winning.					
	A two-person game of chance is a fair game if each player has probability $\frac{1}{2}$ of winning, that is, if each player has the same probability of winning as of losing.					
independent events	Two events are <u>independent</u> if the occurrence (or nonoccurrence) of one event does not affect the likelihood of the other. See <u>dependent</u> .					
	In the probability experiment of rolling a number cube and flipping a coin, the event of rolling a 1 is independent of the event of getting heads on the coin flip.					
	The probability of rolling the 1 is $\frac{1}{6}$, no matter what the outcome of the coin flip is.					
	In other words, the cube roll does not depend at all on the coin flip.					
outcome	An outcome is a result of a probability experiment.					
	If we roll a number cube, there are six possible outcomes: 1, 2, 3, 4, 5, 6.					
percent	A <u>percent</u> is a number expressed in terms of the unit $1\% = \frac{1}{100}$.					
	Fifteen percent = $15\% = \frac{15}{100} = 0.15$.					
	$\frac{5}{6} = 0.8\overline{3} = 83.\overline{3}\%$					

Word or Phrase	Definition
probability	The <u>probability</u> of an event is a measure of the likelihood of that event occurring. The probability $P(E)$ of the event E occurring satisfies $0 \le P(E) \le 1$. If the event, E , is certain to occur, then $P(E) = 1$. If the event E is impossible, then $P(E) = 0$.
	When flipping a fair coin, the probability that it will land on heads is $\frac{1}{2} = 0.5 = 50\%$.
probability experiment	A probability experiment is an experiment in which the results are subject to chance.
•	Rolling a number cube can be considered a probability experiment.
repeating decimal	A <u>repeating decimal</u> is a decimal that ends in repetitions of the same block of digits.
	The repeating decimal 52.19343434 ends in repetitions of the block "34." An abbreviated notation for the decimal is $52.19\overline{34}$, where the bar over 34 indicates that the block is repeated.
	The terminating decimal 4.62 is regarded as a repeating decimal. Its value is 4.620000
sample space	The <u>sample space</u> for a probability experiment is the set of all possible outcomes of the experiment.
	In the probability experiment of rolling a number cube, the sample space can be represented as the set {1, 2, 3, 4, 5, 6}.
simulation	Simulation is the imitation of one process by means of another process.
	We may simulate rolling a number cube by drawing a card blind from a group of six identical cards labeled one through six. We may simulate the weather by means of computer models.
terminating decimal	A <u>terminating decimal</u> is a decimal whose digits are 0 from some point on. Terminating decimals are regarded as repeating decimals, though the final 0's in the expression for a terminating decimal are usually omitted. See <u>repeating decimal</u> .
	4.62 = 4.62000000 is a terminating decimal with value $4 + \frac{6}{10} + \frac{2}{100}$.
theoretical probability	The <u>theoretical probability</u> of an event is a measure of the likelihood of the event occurring.
	In the probability experiment of rolling a (fair) number cube, there are six equally
	likely outcomes, each with probability $\frac{1}{6}$. Since the event of rolling an even
	number corresponds to 3 of the outcomes, the theoretical probability of rolling an $1 - 2$
	even number is 3 out of 6, or $3 \cdot \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$.
trial	Each performance or repetition of a probability experiment is called a <u>trial</u> .
	Flipping a coin 25 times can be viewed as 25 trials of the probability experiment of flipping a coin once.

Phrases That Describe Probabilities							
In their assessment reports on climate change, climate scientists attach the following probabilities to common expressions of likelihood:							
	Virtually certain:	>	99% probability				
	Extremely likely:	>	95% probability				
	Very likely:	>	90% probability				
	Likely:	>	66% probability				
	More likely than not:	>	50% probability				
	About as likely as not:	33	8 to 66% probability				
	Unlikely:	<	33% probability				
	Very unlikely:	<	10% probability				
	Extremely unlikely:	<	5% probability				
	Exceptionally unlikely:	<	1% probability				

Estimating Probabilities from an Experiment With Equally Likely Outcomes

To estimate the probability of an event E, repeat the experiment a number of times and observe how many times the event occurs. The estimate for the probability of the event E occurring is then given by the fraction:

estimate = $\frac{\text{number of times an event } E \text{ occurs}}{\text{number of trials}}$ = $\frac{\text{numerator}}{\text{denominator}}$

In a probability experiment of rolling a number cube with six equally likely outcomes, each has probability $\frac{1}{6}$.

The event of rolling an odd number corresponds to three outcomes: 1, 3, or 5. Below is data from an experiment where a cube is rolled 10 times.

Trial #	1	2	3	4	5	6	7	8	9	10	
Outcome	4	5	6	3	5	2	1	6	4	2	

In this experiment, an odd number occurred 4 times.

estimate(odd) =
$$\frac{4}{10} = \frac{2}{5} = 40\%$$

Since the estimate is based on an experiment, different experiments may lead to different estimates.

Finding Theoretical Probabilities

In a probability experiment of rolling a number cube with six equally likely outcomes, each has probability $\frac{1}{6}$.

The event of rolling an odd number corresponds to three outcomes: 1, 3, or 5. Thus the theoretical probability of rolling an odd number is given by the fraction:

 $P(E) = \frac{\text{number of outcomes in an event } E}{\text{total number of outcomes}} = \frac{3}{6} = \frac{1}{2} = 50\%$

MathLinks: Grade 7 (2nd ed.) ©CMAT Unit 1: Student Packet

Probability

