## Unit 5: Rational Numbers 2

Dear Parents/Guardians,

Unit 5 continues with the counter model to develop integer multiplication rules. Students investigate patterns and the inverse relationship between multiplication and division to develop integer division rules. In this lesson, a temperature context from the opening lesson connects to the counter model. In Lesson 2 students use number lines as a way to convince themselves that the integer multiplication and division rules hold for other rational numbers (signed fractions and decimals). In Lesson 3 students make sense of the order of operations conventions and use the order of operations to solve problems involving rational numbers.

### **The Counter Model**

A positive (+) counter represents a value of 1. 🕂

A negative (-) counter represents a value of -1.

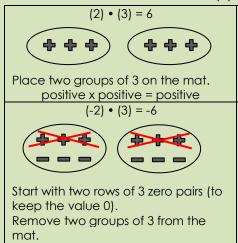
A "zero pair" is represented by one positive and one negative counter and has a value of zero (0). 🕂 💻

 $(2) \cdot (-3) = -6$ 

Place two groups of (-3) on the mat.

positive x negative = negative

 $(-2) \cdot (-3) = -6$ 


Start with two rows of 3 zero pairs (to

Remove two groups of (-3) from the

negative x negative = positive

keep the value 0).

mat.



negative x positive = negative

#### **Relating Multiplication and Division**

Students use the relationship between multiplication and division to develop rules for signed division.

| Multiplication<br>Fact | Related Division<br>Facts                  | Division Rule                                                    |
|------------------------|--------------------------------------------|------------------------------------------------------------------|
| (5) × (8) = 40         | 40 ÷ (5) = 8<br>40 ÷ (8) = 5               | positive ÷ positive = positive                                   |
| (3) × (-4) = -12       | -12 ÷ (3) = -4<br>-12 ÷ (-4) = 3           | negative ÷ positive = negative<br>negative ÷ negative = positive |
| (-2) × (7) = -14       | -14 ÷ (-2) = 7<br>-14 ÷ (7) = -2           | negative ÷ negative = positive<br>negative ÷ positive = negative |
| (-5) × (-6) = 30       | $30 \div (-6) = -5$<br>$30 \div (-5) = -6$ | positive ÷ negative = negative                                   |





# By the end of the unit, your student should know...

- How to multiply integers using counters and then rules [Lesson 5.1]
- How to divide integers based upon the inverse relationship between multiplication and division [Lessons 5.1 and 5.2]
- How to represent multiplication of rational numbers on a number line [Lesson 5.2]
- How to multiply and divide rational numbers using any method [Lesson 5.2]
- How to use the conventions of the order of operations to evaluate expressions and solve problems [Lesson 5.3]

#### Additional Resources

- For definitions and additional notes please refer to Student Resources at the end of this unit.
- For more on multiplying integers with counters: <u>https://youtu.be/MuZ3Y3PYv2U</u> and <u>https://youtu.be/Yhoz1g35alw</u>
- For more on order of operations: <u>https://tinyurl.com/khan-order-of-operations</u>